• Title/Summary/Keyword: regression kriging model

Search Result 42, Processing Time 0.023 seconds

A Comparative Study on the Spatial Statistical Models for the Estimation of Population Distribution

  • Oh, Doo-Ri;Hwang, Chul Sue
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.145-153
    • /
    • 2015
  • This study aims to accurately estimate population distribution more specifically than administrative unites using a RK (Regression-Kriging) model. The RK model is the areal interpolation technique that involves linear regression and the Kriging model. In order to estimate a population’s distribution using a sample region, four different models were used, namely; a regression model, RK model, OK (Ordinary Kriging) model and CK (Co-Kriging) model. The results were then compared with each other. Evaluation of the accuracy and validity of evaluation analysis results were the basis RMSE (Root Mean Square Error), MAE (Mean Absolute Error), G statistic and correlation coefficient (ρ). In the sample regions, every statistic value of the RK model showed better results than other models. The results of this comparative study will be useful to estimate a population distribution of the metropolitan areas with high population density

Population Distribution Estimation Using Regression-Kriging Model (Regression-Kriging 모형을 이용한 인구분포 추정에 관한 연구)

  • Kim, Byeong-Sun;Ku, Cha-Yong;Choi, Jin-Mu
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.6
    • /
    • pp.806-819
    • /
    • 2010
  • Population data has been essential and fundamental in spatial analysis and commonly aggregated into political boundaries. A conventional method for population distribution estimation was a regression model with land use data, but the estimation process has limitation because of spatial autocorrelation of the population data. This study aimed to improve the accuracy of population distribution estimation by adopting a Regression-Kriging method, namely RK Model, which combines a regression model with Kriging for the residuals. RK Model was applied to a part of Seoul metropolitan area to estimate population distribution based on the residential zones. Comparative results of regression model and RK model using RMSE, MAE, and G statistics revealed that RK model could substantially improve the accuracy of population distribution. It is expected that RK model could be adopted actively for further population distribution estimation.

Generalized Kriging Model for Interpolation and Regression (보간과 회귀를 위한 일반크리깅 모델)

  • Jung Jae Jun;Lee Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.277-283
    • /
    • 2005
  • Kriging model is widely used as design analysis and computer experiment (DACE) model in the field of engineering design to accomplish computationally feasible design optimization. In general, kriging model has been applied to many engineering applications as an interpolation model because it is usually constructed from deterministic simulation responses. However, when the responses include not only global nonlinearity but also numerical error, it is not suitable to use Kriging model that can distort global behavior. In this research, generalized kriging model that can represent both interpolation and regression is proposed. The performances of generalized kriging model are compared with those of interpolating kriging model for numerical function with error of normal distribution type and trigonometric function type. As an application of the proposed approach, the response of a simple dynamic model with numerical integration error is predicted based on sampling data. It is verified that the generalized kriging model can predict a noisy response without distortion of its global behavior. In addition, the influences of maximum likelihood estimation to prediction performance are discussed for the dynamic model.

Analysis of the Spatial Distribution of Total Phosphorus in Wetland Soils Using Geostatistics (지구통계학을 이용한 습지 토양 중 총인의 공간분포 분석)

  • Kim, Jongsung;Lee, Jungwoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.551-557
    • /
    • 2016
  • Fusing satellite images and site-specific observations have potential to improve a predictive quality of environmental properties. However, the effect of the utilization of satellite images to predict soil properties in a wetland is still poorly understood. For the reason, block kriging and regression kriging were applied to a natural wetland, Water Conservation Area-2A in Florida, to compare the accuracy improvement of continuous models predicting total phosphorus in soils. Field observations were used to develop the soil total phosphorus prediction models. Additionally, the spectral data and derived indices from Landsat ETM+, which has 30 m spatial resolution, were used as independent variables for the regression kriging model. The block kriging model showed $R^2$ of 0.59 and the regression kriging model showed $R^2$ of 0.49. Although the block kriging performed better than the regession kriging, both models showed similar spatial patterns. Moreover, regression kriging utilizing a Landsat ETM+ image facilitated to capture unique and complex landscape features of the study area.

Structural reliability assessment using an enhanced adaptive Kriging method

  • Vahedi, Jafar;Ghasemi, Mohammad Reza;Miri, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.677-691
    • /
    • 2018
  • Reliability assessment of complex structures using simulation methods is time-consuming. Thus, surrogate models are usually employed to reduce computational cost. AK-MCS is a surrogate-based Active learning method combining Kriging and Monte-Carlo Simulation for structural reliability analysis. This paper proposes three modifications of the AK-MCS method to reduce the number of calls to the performance function. The first modification is related to the definition of an initial Design of Experiments (DoE). In the original AK-MCS method, an initial DoE is created by a random selection of samples among the Monte Carlo population. Therefore, samples in the failure region have fewer chances to be selected, because a small number of samples are usually located in the failure region compared to the safe region. The proposed method in this paper is based on a uniform selection of samples in the predefined domain, so more samples may be selected from the failure region. Another important parameter in the AK-MCS method is the size of the initial DoE. The algorithm may not predict the exact limit state surface with an insufficient number of initial samples. Thus, the second modification of the AK-MCS method is proposed to overcome this problem. The third modification is relevant to the type of regression trend in the AK-MCS method. The original AK-MCS method uses an ordinary Kriging model, so the regression part of Kriging model is an unknown constant value. In this paper, the effect of regression trend in the AK-MCS method is investigated for a benchmark problem, and it is shown that the appropriate choice of regression type could reduce the number of calls to the performance function. A stepwise approach is also presented to select a suitable trend of the Kriging model. The numerical results show the effectiveness of the proposed modifications.

Estimation of Near Surface Air Temperature Using MODIS Land Surface Temperature Data and Geostatistics (MODIS 지표면 온도 자료와 지구통계기법을 이용한 지상 기온 추정)

  • Shin, HyuSeok;Chang, Eunmi;Hong, Sungwook
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2014
  • Near surface air temperature data which are one of the essential factors in hydrology, meteorology and climatology, have drawn a substantial amount of attention from various academic domains and societies. Meteorological observations, however, have high spatio-temporal constraints with the limits in the number and distribution over the earth surface. To overcome such limits, many studies have sought to estimate the near surface air temperature from satellite image data at a regional or continental scale with simple regression methods. Alternatively, we applied various Kriging methods such as ordinary Kriging, universal Kriging, Cokriging, Regression Kriging in search of an optimal estimation method based on near surface air temperature data observed from automatic weather stations (AWS) in South Korea throughout 2010 (365 days) and MODIS land surface temperature (LST) data (MOD11A1, 365 images). Due to high spatial heterogeneity, auxiliary data have been also analyzed such as land cover, DEM (digital elevation model) to consider factors that can affect near surface air temperature. Prior to the main estimation, we calculated root mean square error (RMSE) of temperature differences from the 365-days LST and AWS data by season and landcover. The results show that the coefficient of variation (CV) of RMSE by season is 0.86, but the equivalent value of CV by landcover is 0.00746. Seasonal differences between LST and AWS data were greater than that those by landcover. Seasonal RMSE was the lowest in winter (3.72). The results from a linear regression analysis for examining the relationship among AWS, LST, and auxiliary data show that the coefficient of determination was the highest in winter (0.818) but the lowest in summer (0.078), thereby indicating a significant level of seasonal variation. Based on these results, we utilized a variety of Kriging techniques to estimate the surface temperature. The results of cross-validation in each Kriging model show that the measure of model accuracy was 1.71, 1.71, 1.848, and 1.630 for universal Kriging, ordinary Kriging, cokriging, and regression Kriging, respectively. The estimates from regression Kriging thus proved to be the most accurate among the Kriging methods compared.

Comparison between Kriging and GWR for the Spatial Data (공간자료에 대한 지리적 가중회귀 모형과 크리깅의 비교)

  • Kim Sun-Woo;Jeong Ae-Ran;Lee Sung-Duck
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.271-280
    • /
    • 2005
  • Kriging methods as traditional spatial data analysis methods and geographical weighted regression models as statistical analysis methods are compared. In this paper, we apply data from the Ministry of Environment to spatial analysis for practical study. We compare these methods to performance with monthly carbon monoxide observations taken at 116 measuring area of air pollution in 1999.

Spatial analysis for a real transaction price of land (공간회귀모형을 이용한 토지시세가격 추정)

  • Choi, Jihye;Jin, Hyang Gon;Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.217-228
    • /
    • 2018
  • Since the real estate reporting system was first introduced, about 2 million real estate transaction per year have been reported over the last 10 years with an increasing demand for real estate price estimates. This study looks at the applicability and superiority of the regression-kriging method to derive effective real transaction prices estimation on the location where information about real transaction is unavailable. Several issues on predicting the real estate price are discussed and illustrated using the real transaction reports of Jinju, Gyeongsangnam-do. Results have been compared with a simple regression model in terms of the mean absolute error and root square error. It turns out that the regression-kriging model provides a more effective estimation of land price compared to the simple regression model. The regression-kriging method adequately reflects the spatial structure of the term that is not explained by other characteristic variables.

Estimating Forest Carbon Stocks in Danyang Using Kriging Methods for Aboveground Biomass (크리깅 기법을 이용한 단양군의 산림 탄소저장량 추정 - 지상부 바이오매스를 대상으로 -)

  • Park, Hyun-Ju;Shin, Hyu-Seok;Roh, Young-Hee;Kim, Kyoung-Min;Park, Key-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.16-33
    • /
    • 2012
  • The aim of this study is to estimate aboveground biomass carbon stocks using ordinary kriging(OK) which is the most commonly used type of kriging and regression kriging(RK) that combines a regression of the auxiliary variables with simple kriging. The analysis results shows that the forest carbon stock in Danyang is estimated at 3,459,902 tonC with OK and 3,384,581 tonC with RK in which the R-square value of the regression model is 0.1033. The result of RK conducted with sample plots stratified by forest type(deciduous, conifer and mixed) shows the lowest estimated value of 3,336,206 tonC and R-square value(0.35 and 0.18 respectively) is higher than that of when all sample plots used. The result of leave-one-out cross validation of each method indicates that RK with all sample plots reached the smallest root mean square error(RMSE) value(22.32 ton/ha) but the difference between the methods(0.23 ton/ha) is not significant.

A Study on the Prediction of Traffic Counts Based on Shortest Travel Path (최단경로 기반 교통량 공간 예측에 관한 연구)

  • Heo, Tae-Young;Park, Man-Sik;Eom, Jin-Ki;Oh, Ju-Sam
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.3
    • /
    • pp.459-473
    • /
    • 2007
  • In this paper, we suggest a spatial regression model to predict AADT. Although Euclidian distances between one monitoring site and its neighboring sites were usually used in the many analysis, we consider the shortest travel path between monitoring sites to predict AADT for unmonitoring site using spatial regression model. We used universal Kriging method for prediction and found that the overall predictive capability of the spatial regression model based on shortest travel path is better than that of the model based on multiple regression by cross validation.