• Title/Summary/Keyword: regional earthquake

Search Result 118, Processing Time 0.025 seconds

Research on Earthquake Occurrence Characteristics Through the Comparison of the Yangsan-ulsan Fault System and the Futagawa-Hinagu Fault System (양산-울산 단층계와 후타가와-히나구 단층계의 비교를 통한 지진발생특성 연구)

  • Lee, Jinhyun;Gwon, Sehyeon;Kim, Young-Seog
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.195-209
    • /
    • 2016
  • The understanding of geometric complexity of strike-slip Fault system can be an important factor to control fault reactivation and surface rupture propagation under the regional stress regime. The Kumamoto earthquake was caused by dextral reactivation of the Futagawa-Hinagu Fault system under the E-W maximum horizontal principal stress. The earthquakes are a set of earthquakes, including a foreshock earthquake with a magnitude 6.2 at the northern tip of the Hinagu Fault on April 14, 2016 and a magnitude 7.0 mainshock which generated at the intersection of the two faults on April 16, 2016. The hypocenters of the main shock and aftershocks have moved toward NE direction along the Futagawa Fault and terminated at Mt. Aso area. The intersection of the two faults has a similar configuration of ${\lambda}$-fault. The geometries and kinematics, of these faults were comparable to the Yansan-Ulsan Fault system in SE Korea. But slip rate is little different. The results of age dating show that the Quaternary faults distributed along the northern segment of the Yangsan Fault and the Ulsan Fault are younger than those along the southern segment of the Yansan Fault. This result is well consistent with the previous study with Column stress model. Thus, the seismic activity along the middle and northern segment of the Yangsan Fault and the Ulsan Fault might be relatively active compared with that of the southern segment of the Yangsan Fault. Therefore, more detailed seismic hazard and paleoseismic studies should be carried out in this area.

A Study on Seismic Source and Propagntion Characteristics using a Series of 12 Fukuoka Earthquakes (후쿠오카 지역에서 발생한 12개 지진의 지진원 밑 지진파 감쇠값에 관한 연구)

  • Kim, Jun-Kyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.89-97
    • /
    • 2007
  • Parameters including the seismic sources and the elastic wave propagation characteristics were analysed using the observed ground motions from 12 Fukuoka region earthquakes. The Levenberg-Marquardt algorithm was applied to invert all the variables non-linearly and simultaneously with S wave energy in fiequency domain. Average stress drop of 12 events and local attenuation parameter $\kappa$ under seismic stations were estimated to about 79.2-bar and 0.043 respectively. Regional attenuation parameter, Qo and ${\eta}$, were also estimated to be about 248.1 and 0.558 respectively. Low value of Qo seems to caused by inhomogeneous tectonic characteristics between Japan island and southern Korean peninsula. $\kappa$ values are much higher than that characterizing EUS (Eastern United States) region, and nearly similar to that of WUS (Western Waited States) region. If the informations on site specific amplification of all the seismic stations are known, $\kappa$ values can be estimated more precisely. All the values including the seismic sources and the site and crustal scale propagation characteristics can be used as seismic design parameters.

Estimates of Surface Explosion Energy Based on the Transmission Loss Correction for Infrasound Observations in Regional Distances (인프라사운드 대기 전파 투과손실 보정을 통한 원거리 지표폭발 에너지 추정)

  • Che, Il-Young;Kim, Inho
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.478-489
    • /
    • 2020
  • This study presents an analysis of infrasonic signals from two accidental explosions in Gwangyang city, Jeonnam Province, Korea, on December 24, 2019, recorded at 12 infrasound stations located 151-435 km away. Infrasound propagation refracted at an altitude of ~40 km owing to higher stratospheric wind in the NNW direction, resulting in favorable detection at stations in that direction. However, tropospheric phases were observed at stations located in the NE and E directions from the explosion site because of the strong west wind jet formed at ~10 km. The transmission losses on the propagation path were calculated using the effective sound velocity structure and parabolic equation modeling. Based on the losses, the observed signal amplitudes were corrected, and overpressures were estimated at the reference distance. From the overpressures, the source energy was evaluated through the overpressure-explosive charge relationship. The two explosions were found to have energies equivalent to 14 and 65 kg TNT, respectively. At the first explosion, a flying fragment forced by an explosive shock wave was observed in the air. The energy causing the flying fragment was estimated to be equivalent to 49 kg or less of TNT, obtained from the relationship between the fragment motion and overpressure. Our infrasound propagation modeling is available to constrain the source energy for remote explosions. To enhance the confidence in energy estimations, further studies are required to reflect the uncertainty of the atmospheric structure models on the estimations and to verify the relationships by various ground truth explosions.

Development for the function of Wind wave Damage Estimation at the Western Coastal Zone based on Disaster Statistics (재해통계기반 서해 연안지역의 풍랑피해예측함수 개발)

  • Choo, Tai Ho;Kwak, Kil Sin;Ahn, Si Hyung;Yang, Da Un;Son, Jong Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.14-22
    • /
    • 2017
  • The frequency and scale of natural disasters due to the abnormal climate phenomena caused by global warming have being increasing all over the world. Various natural disasters, such as typhoons, earthquakes, floods, heavy rain, drought, sweltering heat, wind waves, tsunamis and so on, can cause damage to human life. Especially, the damage caused by natural disasters such as the Earthquake of Japan, hurricane Katrina in the United States, typhoon Maemi and so on, have been enormous. At this stage, it is difficult to estimate the scale of damage due to (future) natural disasters and cope with them. However, if we could predict the scale of damage at the disaster response level, the damage could be reduced by responding to them promptly. In the present study, therefore, among the many types of natural disaster, we developed a function to estimate the damage due to wind waves caused by sea winds and waves. We collected the damage records from the Disaster Report ('91~'14) published by the Ministry of Public Safety and Security about wind waves and typhoons in the western coastal zone and, in order to reflect the inflation rate, we converted the amount of damage each year into the equivalent amount in 2014. Finally, the meteorological data, such as the wave height, wind speed, tide level, wave direction, wave period and so on, were collected from the KMA (Korea Meteorological Administration) and KHOA (Korea Hydrographic and Oceanographic Agency)'s web sites, for the periods when wind wave and typhoon damage occurred. After that, the function used to estimate the wind wave damage was developed by reflecting the regional characteristics for the 9 areas of the western coastal zone.

Regional Estimation of Site-specific Seismic Responses at Gyeongju by Building GIS-based Geotechnical Information System (GIS 기반의 지반 정보 시스템 구축을 통한 경주 지역 부지고유 지진 응답의 지역적 평가)

  • Sun, Chang-Guk;Chung, Choon-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.2
    • /
    • pp.38-50
    • /
    • 2008
  • The site-specific seismic responses and corresponding seismic hazards are influenced mainly by the subsurface geologic and geotechnical dynamic characteristics. To estimate reliably the seismic responses in this study, a geotechnical information system (GTIS) within GIS framework was developed by introducing new concepts, which consist of the extended area containing the study area and the additional site visit for acquiring surface geo-knowledge data. The GIS-based GTIS was built for Gyeongju area, which has records of abundant historical seismic hazards reflecting the high potential of future earthquakes. At the study area, Gyeongju, intensive site investigations and pre-existing geotechnical data collections were performed and the site visits were additionally carried out for assessing geotechnical characteristics and shear wave velocity ($V_S$) representing dynamic property. Within the GTIS for Gyeongju area, the spatially distributed geotechnical layers and $V_S$ in the entire study area were reliably predicted from the site investigation data using the geostatistical kriging method. Based on the spatial geotechnical layers and $V_S$ predicted within the GTIS, a seismic zoning map on site period ($T_G$) from which the site-specific seismic responses according to the site effects can be estimated was created across the study area of Gyeongju. The spatial $T_G$ map at Gyeongju indicated seismic vulnerability of two- to five-storied buildings. In this study, the seismic zonation based on $T_G$ within the GIS-based GTIS was presented as regional efficient strategy for seismic hazard prediction and mitigation.

  • PDF

A Study on the Ripple Effect Economy of Busan Ubiquitous-Safety Realization on Using an Input-Output Model (I-O모형을 이용한 부산 U-방재 실현의 경제적 파급 효과 분석에 관한 연구)

  • Ryu, Tae-Chang;Kim, Tae-Min;Kim, Gyeong-Su
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.93-100
    • /
    • 2008
  • Dense of population construction and high density of skyscraper, and geological characteristics caused natural disasters(e.g. typhoon, tsunami, flood, storm, earthquake, etc.) and manmade disasters(e.g. fire, collapse, explosion, traffic accident, etc.). the extent and scale of the disaster are getting larger. To cope with such problems, Busan City has established the basic plan to secure the life and property of the citizens through model strategy and design of Ubiquitous-Safety Busan. This study quantitatively analyzed the ripple effect on local economy through the fulfillment of Ubiquitous-Safety. The production inducing effect of 250 billion won directly and indirectly can be estimated due to the realization of Ubiquitous-Safety. The value added effect of 115 billion won can be estimated. the employment effect of 5,580 persons can be generated with income effect of 51 billion won.

Proposal for Wind Wave Damage Cost Estimation at the Southern Coastal Zone based on Disaster Statistics (재해통계기반 남해연안지역 풍랑피해액예측함수 제안)

  • Choo, Tai-Ho;Yun, Gwan-Seon;Kwon, Yong-Been;Park, Sang-Jin;Kim, Seong-Ryul
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.4
    • /
    • pp.267-274
    • /
    • 2017
  • The natural disasters such as typhoon, earthquake, flood, heavy rain, drought, sweltering heat, wind wave, tsunami and so on, are difficult to estimate the scale of damage and spot. Also, these disasters were being damaged to human life. However, if based on the disaster statistics the past damage cases are analyzed and the estimated damages can be calculated, the initial damage action can be taken immediately and based on the estimated damage scale the damage can be mitigated. In the present study, therefore, we proposed the functions of wind wave damage estimation for the southern coast. The functions are developed based on Disaster Report('91~'14) for wind wave and typhoon disaster statistics, regional characteristics and observed sea weather.

Seismic vulnerability of old confined masonry buildings in Osijek, Croatia

  • Hadzima-Nyarko, Marijana;Pavica, Gordana;Lesic, Marija
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.629-648
    • /
    • 2016
  • This paper deals with 111 buildings built between 1962 and 1987, from various parts of the city of Osijek, for which, through the collection of documentation, a database is created. The aim of this paper is to provide the first steps in assessing seismic risk in Osijek applying method based on vulnerability index. This index uses collected information of parameters of the building: the structural system, the construction year, plan, the height, i.e., the number of stories, the type of foundation, the structural and non-structural elements, the type and the quality of main construction material, the position in the block and built-up area. According to this method defining five damage states, the action is expressed in terms of the macroseismic intensity and the seismic quality of the buildings by means of a vulnerability index. The value of the vulnerability index can be changed depending on the structural systems, quality of construction, etc., by introducing behavior and regional modifiers based on expert judgments. Since there is no available data of damaged buildings under earthquake loading in our country, we will propose behavior modifiers based on values suggested by earlier works and on judgment based on available project documentation of the considered buildings. Depending on the proposed modifiers, the seismic vulnerability of existing buildings in the city of Osijek will be assessed. The resulting vulnerability of the considered residential buildings provides necessary insight for emergency planning and for identification of critical objects vulnerable to seismic loading.

Analysis of Social Issues of the Newspaper Articles on Gyeongju Earthquakes (신문기사에 나타난 경주지진 사건의 사회적 이슈분석)

  • Lee, Soo-Sang
    • Journal of Korean Library and Information Science Society
    • /
    • v.48 no.2
    • /
    • pp.53-72
    • /
    • 2017
  • The purpose of this study is to analyze types and features social issues about the Gyeongju earthquakes 2016, South Korea. The specific purpose is to identify types of topics related to Gyeongju Earthquakes, changes of topics over time, and the differences of topics depending on the each type of newspapers. According to the result of topic modeling, 55 topics were extracted. The result of this study is following these. First, the main topics have been changed with the course of time. In September, various topics were emerged, specifically urgent issues was found during two weeks after the first earthquake. After October, topics about social problems derived from the earthquakes received much attention at that time. Topics related to safety problems about nuclear plant have steadily found in all period. Second, topics varied depending whether the newspaper is national or regional. Also, differences of topics were found when dividing the newspapers by their characteristics considered conservative or liberal.

Artificial Intelligence Estimation of Network Flows for Seismic Risk Analysis (지진 위험도 분석에서 인공지능모형을 이용한 네트워크 교통량의 예측)

  • Kim, Geun-Young
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.3
    • /
    • pp.117-130
    • /
    • 1999
  • Earthquakes damage roadway bridges and structures, resulting in significant impacts on transportation system Performance and regional economy. Seismic risk analysis (SRA) procedures establish retrofit priorities for vulnerable highway bridges. SRA procedures use average daily traffic volumes to determine the relative importance of a bridge. This research develops a cost-effective transportation network analysis (TAN) procedure for evaluating numerous traffic flow analyses in terms of the additional system cost due to failure. An important feature of the TNA Procedure is the use of an associative memory (AM) approach in the artificial intelligence held. A simple seven-zone network is developed and used to evaluate the TNA procedure. A subset of link failure system states is randomly selected to simulate synthetic post-earthquake network flows. The performance of different AM model is evaluated. Results from numerous link-failure scenarios demonstrate the applicability of the AM models to traffic flow estimation.

  • PDF