• Title/Summary/Keyword: region histogram

Search Result 361, Processing Time 0.027 seconds

Tree-Based Static/Dynamic Image Mosaicing (트리 기반 정적/동적 영상 모자이크)

  • Kang, Oh-hyung;Rhee, Yang-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.758-766
    • /
    • 2003
  • This paper proposes a tree-based hierarchical image mosaicing system using camera and object parameters for efficient video database construction. Gray level histogram difference and average intensity difference are proposed for scene change detection of input video. Camera parameter measured by utilizing least sum of square difference and affine model, and difference image is used for similarity measure of two input images. Also, dynamic objects are searched by through macro block setting and extracted by using region splitting and 4-split detection methods. Dynamic trajectory evaluation function is used for expression of dynamic objects, and blurring is performed for construction of soft and slow mosaic image.

Image Segmentation Using Mathematical Morphology (수리형태학을 이용한 영상 분할)

  • Cho Sun-gil;Kang Hyunchul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11C
    • /
    • pp.1076-1082
    • /
    • 2005
  • Recently, there have been much efforts in the image segmentation using morphological approach. Among them, the watershed algorithm is one of powerful tools which can take advantages of both of the conventional edge-based segmentation and region-based segmentation. The concept of watershed is based on topographic analogy. But, its high sensitivity to noise yields a very large number of resulting segmented regions which leads to oversegmentation. So we suggest the restricted waterfall algorithm which reduce the oversegmentation by eliminate not only local minima but also local maxima. As a result, the restricted waterfall algorithm has a good segmented image than the other methods, and has a better binary image than the histogram thresholding method.

Distance Measuring Method for Motion Capture Animation (모션캡쳐 애니메이션을 위한 거리 측정방법)

  • Lee, Heei-Man;Seo, Jeong-Man;Jung, Suun-Key
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.129-138
    • /
    • 2002
  • In this paper, a distance measuring algorithm for motion capture using color stereo camera is proposed. The color markers attached on articulations of an actor are captured by stereo color video cameras, and color region which has the same color of the marker's color in the captured images is separated from the other colors by finding dominant wavelength of colors. Color data in RGB (red, green, blue) color space is converted into CIE (Commission Internationale del'Eclairage) color space for the purpose of calculating wavelength. The dominant wavelength is selected from histogram of the neighbor wavelengths. The motion of the character in the cyber space is controlled by a program using the distance information of the moving markers.

Door Detection with Door Handle Recognition based on Contour Image and Support Vector Machine (외곽선 영상과 Support Vector Machine 기반의 문고리 인식을 이용한 문 탐지)

  • Lee, Dong-Wook;Park, Joong-Tae;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1226-1232
    • /
    • 2010
  • A door can serve as a feature for place classification and localization for navigation of a mobile robot in indoor environments. This paper proposes a door detection method based on the recognition of various door handles using the general Hough transform (GHT) and support vector machine (SVM). The contour and color histogram of a door handle extracted from the database are used in GHT and SVM, respectively. The door recognition scheme consists of four steps. The first step determines the region of interest (ROI) images defined by the color information and the environment around the door handle for stable recognition. In the second step, the door handle is recognized using the GHT method from the ROI image and the image patches are extracted from the position of the recognized door handle. In the third step, the extracted patch is classified whether it is the image patch of a door handle or not using the SVM classifier. The door position is probabilistically determined by the recognized door handle. Experimental results show that the proposed method can recognize various door handles and detect doors in a robust manner.

Fire Detection using Color and Motion Models

  • Lee, Dae-Hyun;Lee, Sang Hwa;Byun, Taeuk;Cho, Nam Ik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.237-245
    • /
    • 2017
  • This paper presents a fire detection algorithm using color and motion models from video sequences. The proposed method detects change in color and motion of overall regions for detecting fire, and thus, it can be implemented in both fixed and pan/tilt/zoom (PTZ) cameras. The proposed algorithm consists of three parts. The first part exploits color models of flames and smoke. The candidate regions in the video frames are extracted with the hue-saturation-value (HSV) color model. The second part models the motion information of flames and smoke. Optical flow in the fire candidate region is estimated, and the spatial-temporal distribution of optical flow vectors is analyzed. The final part accumulates the probability of fire in successive video frames, which reduces false-positive errors when fire-like color objects appear. Experimental results from 100 fire videos are shown, where various types of smoke and flames appear in indoor and outdoor environments. According to the experiments and the comparison, the proposed fire detection algorithm works well in various situations, and outperforms the conventional algorithms.

Implementation of Pedestrian Recognition Based on HOG using ROI for Real Time Processing (실시간 처리를 위한 ROI가 적용된 HOG 기반 보행자 인식 구현)

  • Lee, Joo-Young
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.581-585
    • /
    • 2014
  • In this paper, we propose a pedestrian detection by applying the HOG feature using ROI. Conventional HOG method has high accuracy, but shows the disadvantage of slow processing speed. By applying the ROI to the conventional method reduce computations for unnecessary area. Therefore proposed method improves the processing speed. In order to set the ROI area, we propose a structure that combined odd frames and even frames. Odd frame is in charge of operation for the entire area. And even frame does the operation for the ROI area. Implementation results of proposed method maintaining the same accuracy as the conventional method show a 20% improved performance of 8.3 frames per second.

Deskewing Document Image using the Gradient of the Spaces Between Sentences. (문장 사이의 공백 기울기를 이용한 문서 이미지 기울기 보정)

  • Heo, Woo-hyung;Gu, Eun-jin;Kim, Cheol-ki;Cha, Eui-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.379-381
    • /
    • 2013
  • In this paper, we propose a method to detect the gradient of the spaces between sentences and to deskew in the document image. First, gradient is measured by pixels for spaces between sentences that has been done an edge extraction in document image and then skewed image is corrected by using the value of the gradient which has been measured. Since document image is divided into several areas, it shows a robust processing result by handling the margin, images, and multistage form in the document. Because the proposed method does not use pixel of the character region but use the blank area, degraded document image as well as vivid document image is effectively corrected than conventional method.

  • PDF

Alphabetical Gesture Recognition using HMM (HMM을 이용한 알파벳 제스처 인식)

  • Yoon, Ho-Sub;Soh, Jung;Min, Byung-Woo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.384-386
    • /
    • 1998
  • The use of hand gesture provides an attractive alternative to cumbersome interface devices for human-computer interaction(HCI). Many methods hand gesture recognition using visual analysis have been proposed such as syntactical analysis, neural network(NN), Hidden Markov Model(HMM) and so on. In our research, a HMMs is proposed for alphabetical hand gesture recognition. In the preprocessing stage, the proposed approach consists of three different procedures for hand localization, hand tracking and gesture spotting. The hand location procedure detects the candidated regions on the basis of skin-color and motion in an image by using a color histogram matching and time-varying edge difference techniques. The hand tracking algorithm finds the centroid of a moving hand region, connect those centroids, and thus, produces a trajectory. The spotting a feature database, the proposed approach use the mesh feature code for codebook of HMM. In our experiments, 1300 alphabetical and 1300 untrained gestures are used for training and testing, respectively. Those experimental results demonstrate that the proposed approach yields a higher and satisfying recognition rate for the images with different sizes, shapes and skew angles.

  • PDF

A Study on Kohenen Network based on Path Determination for Efficient Moving Trajectory on Mobile Robot

  • Jin, Tae-Seok;Tack, HanHo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.101-106
    • /
    • 2010
  • We propose an approach to estimate the real-time moving trajectory of an object in this paper. The object's position is obtained from the image data of a CCD camera, while a state estimator predicts the linear and angular velocities of the moving object. To overcome the uncertainties and noises residing in the input data, a Extended Kalman Filter(EKF) and neural networks are utilized cooperatively. Since the EKF needs to approximate a nonlinear system into a linear model in order to estimate the states, there still exist errors as well as uncertainties. To resolve this problem, in this approach the Kohonen networks, which have a high adaptability to the memory of the inputoutput relationship, are utilized for the nonlinear region. In addition to this, the Kohonen network, as a sort of neural network, can effectively adapt to the dynamic variations and become robust against noises. This approach is derived from the observation that the Kohonen network is a type of self-organized map and is spatially oriented, which makes it suitable for determining the trajectories of moving objects. The superiority of the proposed algorithm compared with the EKF is demonstrated through real experiments.

Distribution Mapping and Local Analysis of Ciliary Beat Frequencies (세포의 섬모 운동 변화 분석을 위한 CBF 분포도 구성 및 국소적 분포 분석에 관한 연구)

  • Yi, W.J.;Park, K.S.;Min, Y.G.;Sung, M.W.;Lee, K.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.154-160
    • /
    • 1997
  • By their rapid and periodic actions, the cilia of the human respiratory tract play an important role in clearing inhaled noxious particles. Based on the automated image-processing technique, we studied ciliary beat frequency (CBF) objectively and quantitatively. Microscopic ciliary images were transformed into digitized gray ones through an image-grabber, and from these we extracted signals or CBF. By means of a FFT, maximum peak frequencies were detected as CBFs in each partitioned block or the entire digitized field. With these CBFs, we composed distribution maps visualiy showing the spatial distribution of CBFs. Through distribution maps of CBF, the whole aspects of CBF changes or cells and the difference of CBF of neighboring cells can be easily measured and detected. Histogram statistics calculated from the user-defined polygonal window can show the local dominant frequency presumed to be the CBF of a cell or a crust the region includes.

  • PDF