International Journal of Internet, Broadcasting and Communication
/
v.13
no.2
/
pp.156-165
/
2021
In this paper, we propose an histogram weighted centroid based Siamese region proposal network for object tracking. The original Siamese region proposal network uses two identical artificial neural networks which take two different images as the inputs and decide whether the same object exist in both input images based on a similarity measure. However, as the Siamese network is pre-trained offline, it experiences many difficulties in the adaptation to various online environments. Therefore, in this paper we propose to incorporate the histogram weighted centroid feature into the Siamese network method to enhance the accuracy of the object tracking. The proposed method uses both the histogram information and the weighted centroid location of the top 10 color regions to decide which of the proposed region should become the next predicted object region.
Transactions on Electrical and Electronic Materials
/
v.13
no.1
/
pp.10-15
/
2012
In conventional, skin detection methods using for skin color definitions is based on prior knowledge. By experimentation, the threshold value for dividing the background from the skin region is determined subjectively. A drawback of such techniques is that their performance is dependent on a threshold value which is estimated from repeated experiments. To overcome this, the present paper introduces a skin region detection method. This method uses a histogram approximation based on the mean shift algorithm. This proposed method applies the mean shift procedure to a histogram of a skin map of the input image. It is generated by comparing with the standard skin colors in the $C_bC_r$ color space. It divides the background from the skin region by selecting the maximum value according to the brightness level. As the histogram has the form of a discontinuous function. It is accumulated according to the brightness values of the pixels. It is then, approximated by a Gaussian mixture model (GMM) using the Bezier curve technique. Thus, the proposed method detects the skin region using the mean shift procedure to determine a maximum value. Rather than using a manually selected threshold value, as in existing techniques this becomes the dividing point. Experiments confirm that the new procedure effectively detects the skin region.
In this paper, video image segmentation algorithm based on color histogram and change detector is proposed. Color histograms are calculated from both changed region which is detected in the previous and current frame and unchanged region. With each histogram, modes and valleys are detected. Then, color vectors are calculated by averaging pixels in modes. Markers are extracted by labeling color vectors that represent modes, the watershed algorithm is applied to determine uncertain region. In growing region, the root mean square(RMS) of the distance between average pixel in marker region and adjacent pixel is used as a measure. The proposed algorithm based on color histogram and change detector segments video image fastly and effectively. And simulation results show that the proposed method determines the exact boundary between background and foreground.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.10
/
pp.5197-5218
/
2019
Large-scale retrieval algorithm is problem for visual analyses applications, along its research track. In this paper, we propose a high-efficiency region division-based image retrieve approaches, which fuse low-level local color histogram feature and texture feature. A novel image region division is proposed to roughly mimic the location distribution of image color and deal with the color histogram failing to describe spatial information. Furthermore, for optimizing our region division retrieval method, an image descriptor combining local color histogram and Gabor texture features with reduced feature dimensions are developed. Moreover, we propose an extended Canberra distance method for images similarity measure to increase the fault-tolerant ability of the whole large-scale image retrieval. Extensive experimental results on several benchmark image retrieval databases validate the superiority of the proposed approaches over many recently proposed color-histogram-based and texture-feature-based algorithms.
In this paper, we present two types of vision algorithm that mobile robot has CCD camera. for obstacle avoidance. This is simple algorithm that compare with grey level from input images. Also, The mobile robot depend on image processing and move command from PC host. we has been studied self controlled mobile robot system with CCD camera. This system consists of digital signal processor, step motor, RF module and CCD camera. we used wireless RF module for movable command transmitting between robot and host PC. This robot go straight until recognize obstacle from input image that preprocessed by edge detection, converting, thresholding. And it could avoid the obstacle when recognize obstacle by line histogram intensity. Host PC measurement wave from various line histogram each 20 Pixel. This histogram Is ( x , y ) value of pixel. For example, first line histogram intensity wave from ( 0, 0 ) to ( 0, 197 ) and last wave from ( 280, 0 ) to ( 280, 197 ). So we find uniform wave region and nonuniform wave region. The period of uniform wave is obstacle region. we guess that algorithm is very useful about moving robot for obstacle avoidance.
In recent yeas, studies on computer aided diagnosis (CAD) using image analysis on CT images have been conducted with respect to various diseases. Extracting ground-glass opacities (GGO) on lung CT images is one of such subjects, though it has not found an established method yet. If the region of ground-glass opacities is large on CT images, it can be detected without much difficulty. On the other hand, if the region is small, it is still difficult to find it exactly. In the latter case, increasing overlooking possibility cannot be avoided according to smaller size of the region. To solve this difficulty, this paper proposes an automatic technique for extracting ground-glass opacities on lung CT images employing some statistical parameters of a gray level histogram and a differential histogram. The proposed technique is applied to some lung CT images in the performed experiment. The results are shown with discussion on future work.
Journal of Korea Society of Digital Industry and Information Management
/
v.13
no.2
/
pp.63-69
/
2017
The extraction of attention NPC in a FPS game has emerged as a very significant issue. We propose an efficient FPS game operation method, using the attention NPC extraction with a simple arithmetic. First, we define the NPC, using the color histogram interaction and texture similarity in the block to determine the attention NPC. Next, we use the histogram of movement distribution and frequency of movement of the NPC. Becasue, except for the block boundary according to the texture and to extract only the boundaries of the object block. The edge strength is defined to have high values at the NPC object boundaries, while it is designed to have relatively low values at the NPC texture boundaries or in interior of a region. The region merging method also adopts the color histogram intersection technique in order to use color distribution in each region. Through the experiment, we confirmed that NPC has played a crucial role in the FPS game and as a result it draws more speed and strategic actions in the game.
Spatiograms are histograms augmented with spatial means and covariances to capture a richer description of the target. We present a particle filtering framework for region-based tracking using spatiograms. Unlike mean shift, the framework allows for non-differentiable similarity measures to compare two spatiograms; we present one such similarity measure, a combination of a recent weighting scheme and histogram intersection. Experimental results show improved performance with the new measure as well as the importance of global spatial information for tracking. The performance of spatiograms is compared with color histograms and several texture histogram methods.
IEIE Transactions on Smart Processing and Computing
/
v.1
no.2
/
pp.73-77
/
2012
This paper reports a combined depth- and model-based face detection and tracking approach. The proposed algorithm consists of four functional modules; i) color-based candidate region extraction, ii) generation of the depth histogram for handling occlusion, iii) rotation-invariant face region detection using ellipse fitting, and iv) face tracking based on motion prediction. This technique solved the occlusion problem under complicated environment by detecting the face candidate region based on the depth-based histogram and skin colors. The angle of rotation was estimated by the ellipse fitting method in the detected candidate regions. The face region was finally determined by inversely rotating the candidate regions by the estimated angle using Haar-like features that were robustly trained robustly by the frontal face.
Kim Dong-Woo;Song Young-Jun;Kwon Dong-Jin;Ahn Jae-Hyeong
Journal of the Korea Academia-Industrial cooperation Society
/
v.6
no.5
/
pp.367-372
/
2005
In this paper, we proposed a method of content-based image retrieval using variable region. Content-based image retrieval uses color histogram for the most part. But the existing color histogram methods have a disadvantage that it reduces accuracy because of quantization error and absence of spatial information. In order to overcome this, we convert color information to HSV space, quantize hue factor being pure color information, and calculate histogram of the factor. On the other hand, to solve the problem of the absence of spatial information, we select object region in consideration of color feature and region correlation. It maintains the size of region in the selected object region. But non-object region is integrated in one region. After of selection variable region, we retrieve using color feature. As the result of experimentation, the proposed method improves 10$\%$ in average of precision.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.