For efficient massive image retrieval, an image retrieval requires that several important objectives are satisfied, namely: automated extraction of features, efficient indexing and effective retrieval. In this work, we present a technique for extracting the 4-dimension directional feature. By directional detail, we imply strong directional activity in the horizontal, vertical and diagonal direction present in region of the image texture. This directional information also present smoothness of region. The 4-dimension feature is only indexed in the 4-D space so that complex high-dimensional indexing can be avoided.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권10호
/
pp.5197-5218
/
2019
Large-scale retrieval algorithm is problem for visual analyses applications, along its research track. In this paper, we propose a high-efficiency region division-based image retrieve approaches, which fuse low-level local color histogram feature and texture feature. A novel image region division is proposed to roughly mimic the location distribution of image color and deal with the color histogram failing to describe spatial information. Furthermore, for optimizing our region division retrieval method, an image descriptor combining local color histogram and Gabor texture features with reduced feature dimensions are developed. Moreover, we propose an extended Canberra distance method for images similarity measure to increase the fault-tolerant ability of the whole large-scale image retrieval. Extensive experimental results on several benchmark image retrieval databases validate the superiority of the proposed approaches over many recently proposed color-histogram-based and texture-feature-based algorithms.
본 논문에서는 효과적인 영상 검색을 위한 방법으로서 JSEG 영상 분할 기법을 통한 영역 기반의 영상 인덱싱 및 검색 기법을 제안한다. JSEG은 영상을 색상 분류에 따라 양자화하고 이에 영역 윈도우를 적용시켜 J-image를 만든 다음, 세부 분할된 영역의 성장과 병합을 통하여 영상을 효과적으로 분할하는 방법이다. 제안하는 영상 검색 시스템은 JSEG에 의해 분할된 영상을 사용자에게 질의 영상으로 주고, 사용자로 하여금 분할 영상에서 관심 영역군(群)을 선택하게 한다. 그리고 나서, 사용자 질의에 의해 선택된 영역의 MBR을 구하고 이 영역의 중심을 기준으로 다중 윈도우 마스크를 생성하여 적용시킴으로써 특정 관심 영역을 중심으로 한 영상의 전역적인 특징을 추출한다. 최종적으로 추출된 특징의 성능 비교를 위한 기술자로는 누적 히스토그램을 이용하였다. 제안된 방법은 특정 영역에서의 특징과 전역 특징을 동시에 추출하여 검색에 이용함으로써 보다 빠르고 정확하게 사용자가 원하는 영상을 제공할 수 있다. 실험 결과는 영상 색인 및 검색에 있어서 제안된 방법이 영상 기반의 검색 기법과 비교하여 더 효과적임을 보여준다.
본 논문에서는 웨이브릿 변환 영역에서 양방향 반올림 필터를 이용한 객체 영역 기반 고속 영상 검색 방법을 제안한다. 기존의 방법은 웨이브릿 변환 영역의 부대역 전체에서 특징 벡터를 추출하기 때문에 불필요한 배경 정보가 포함됨으로써 검색 효율이 감소하였다. 제안한 방법은 양방향 반올림 필터를 이용하여 객체 영역에서만 특징 벡터를 추출함으로써 불필요한 배경 정보를 제거하여 검색 효율을 향상시킨다. 그리고, 색상 정보에 관한 특징 벡터 수를 감소하여도 일정한 검색 효율을 유지한다. 결론적으로, 영상의 특성에 따라 다소 차이는 있으나 2.5%∼5.3%의 검색 효율이 향상됨을 알 수 있었다.
Serata, M.;Sakuma, K.;Stejic, Z.;Kawamoto, K.;Nobuhara, H.;Yoshida, S.;Hirota, K.
한국지능시스템학회:학술대회논문집
/
한국퍼지및지능시스템학회 2003년도 ISIS 2003
/
pp.451-454
/
2003
A new query method, called query by visual keys, is proposed to aim easy operation and efficient region-based image retrieval (RBIR). Visual keys are constructed from representative regions/subimages in a given image database, and the database is indexed with visual keys. A system on PC is presented, where text retrieval techniques are applied to the image retrieval with visual keys. Experimental results show that one retrieval is done within 4ms and that the proposed system achieves the comparable retrieval precision (with user-friendly operation and low computational cost) to conventional region based image retrieval systems
대부분의 영상색인 기법에서는 영상의 전역 특징값을 이용한다. 그러나 이러한 방법은 영상의 지역적인 변화들을 담아내지 못하기 때문에 만족할 만한 격과를 제공하지 못한다. 본 논문에서는 이러한 문제점을 해결하기 위한 방법으로 영상의 특징점(salient point)과 영상분할을 이용하여 중요영역(important region)을 추출하는 새로운 영역기반 영상검색 시스템을 제안한다. 본 논문에서 제안하는 특징점 추출 기법은 기존의 방법과 비교하여 빠르고 정확한 추출 결과를 보여준다. 선택된 영역에서 추출된 칼라와 질감 정보를 이용하여 검색한 결과는 칼라나 질감 정보의 전력 특징값을 이용한 검색 방법의 결과보다 크게 향상됨을 알 수 있었다.
본 논문에서는 질러 공간과 블록영역 정보에 기반한 새로운 화상검색 방법을 제시한다. 각 화상에 대한 컬러 공간 정보는 컬러 이진세트에 의해 구해지고 블록영역 정보는 영역 세그멘테이션에 의해서 구해진다. 화상 검색 과정에서, 질의 화상과 데이터베이스 화상들의 컬러 및 화상 이진세트들을 비교하여 검색될 후보 화상의 집합을 결정한다. 특히, 유사도 측정 시 컬러 공간 분포와 객체의 블록영역 특징에 가중치를 고려한 검색이 가능하도록 하였다. 제안된 방법을 구현하고 6,000개의 화상들로 이루어진 화상 데이터베이스에 대해 적용함으로써 컬러 공간 및 블록영역특징을 이용한 화상 검색이 매우 효과적임을 보였다.
본 논문에서는 영상의 에지와 칼라 분포를 부영상(sub-image)의 단위로 기술하기 위해 MPEG-7의 여러 가지 서술자 중 에지히스토그램 서술자(EHD: Edge Histogram Descriptor)와 컬러레이아웃 서술자(CLD: Color Layout Descriptor)를 조합한 영역기반 영상 검색 시스템을 제안한다. 영상 내의 관심영역 (ROI) 선택의 기본 단위는 영상 공간을 $16(4{\times}4)$개의 겹치지 않는 영역으로 분할한 EHD의 부영상 블록이다. 따라서 영상 특징 벡터에 대한 블록-대-블록의 일-대-일 대응 관계를 유지하기 위해 CLD의 기술자는 $8{\times}8$ 역 DCT (IDCT)를 통해 $4{\times}4$의 각 부영상에 대응하는 컬러 특징을 생성한다 제안된 방법이 MPEG-7의 기술자에 대해 관심영역기반 영상 검색에 적용될 수 있음을 실험을 통해 제시하였다.
Kim, Deok-Hwan;Song, Jae-Won;Lee, Ju-Hong;Choi, Bum-Ghi
ETRI Journal
/
제29권5호
/
pp.700-702
/
2007
We present a relevance feedback approach based on multi-class support vector machine (SVM) learning and cluster-merging which can significantly improve the retrieval performance in region-based image retrieval. Semantically relevant images may exhibit various visual characteristics and may be scattered in several classes in the feature space due to the semantic gap between low-level features and high-level semantics in the user's mind. To find the semantic classes through relevance feedback, the proposed method reduces the burden of completely re-clustering the classes at iterations and classifies multiple classes. Experimental results show that the proposed method is more effective and efficient than the two-class SVM and multi-class relevance feedback methods.
본 논문에서는 웨이브릿 변환 영역에서 추출된 특징을 기반으로 한 내용기반 영상검색 방법에 관해 연구하였다. 기존의 웨이브릿 기반의 방법에서의 문제점인 특징벡터의 크기를 줄이기 위해 웨이브릿 계수의 영역별 에너지 값을 이용하였으며, 대상물의 이동, 회전, 크기 변화에 영향을 받지 않는 모멘트 특성을 이용한 검색방법을 제안하였다. 본 방법은 특징벡터의 크기를 줄이고, 기존의 특징벡터와 비교해서 검색시간을 단축하면서 분류검색의 효율성을 향상시켰다. 영역기반 영상검색 기능을 제공하기 위해 영상분할 방법에 대해 연구하였으며, 불규칙한 광원에 의한 영향을 최소화할 수 있는 영상분할 방법을 제안하였다 영상분할은 영역병합을 이용하였고, 병합후보영역은 웨이브릿 변환의 고주파 대역 에너지 값을 이용하여 선정하였다 분할된 영역정보를 이용하여 칼라와 질감, 모양 특징벡터를 구성하여 영역기반 영상검색을 수행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.