• 제목/요약/키워드: regioisomer

검색결과 12건 처리시간 0.014초

Frontier Orbitals of Fifteen C20H17(OH)3 Regioisomers: Hybrid DFT B3LYP Study

  • Lee, Seol;Lee, Ji Young;Lee, Kee Hag
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2403-2407
    • /
    • 2013
  • The hybrid density-functional (B3LYP/6-31G(d,p)) method was used to analyze the substitution effect on the $C_{20}H_{20}$ cage based on calculation of the frontier orbitals of fifteen $C_{20}H_{17}(OH)_3$ derivatives. All substitution products were geometrically optimized without constraints and confirmed by frequency analysis. The results suggest that the cis-1 cis-1 cis-2 regioisomer is the most stable isomer, which implies that hydrogen bonding exerts a stronger effect on the relative energies of the trihydroxide than long-range interactions. Thus, this supports the experimental result in which the bisvicinal tetrol was of particular preparative-synthetic interest. While the LUMO of each of the $C_{20}H_{17}(OH)_3$ regioisomers was equivalently delocalized over the void within the cage, the HOMO was limitedly delocalized on substituents and carbons in close proximity to the substituents. The characteristics of the HOMO of each of the regioisomers vary based on the substitution sites. This indicates that the 15 regioisomers of each $C_{20}H_{20}$ trisubstituted derivative might undergo an entirely different set of characteristic chemical reactions with electrophilic reagents. The results further suggest that the penta-substituted OH groups on the surface of the fullerene cage are more likely to be localized on a pentagon than to be homogeneously delocalized.

Licochalcone H Targets EGFR and AKT to Suppress the Growth of Oxaliplatin -Sensitive and -Resistant Colorectal Cancer Cells

  • Seung-On Lee;Mee-Hyun Lee;Ah-Won Kwak;Jin-Young Lee;Goo Yoon;Sang Hoon Joo;Yung Hyun Choi;Jin Woo Park;Jung-Hyun Shim
    • Biomolecules & Therapeutics
    • /
    • 제31권6호
    • /
    • pp.661-673
    • /
    • 2023
  • Treatment of colorectal cancer (CRC) has always been challenged by the development of resistance. We investigated the antiproliferative activity of licochalcone H (LCH), a regioisomer of licochalcone C derived from the root of Glycyrrhiza inflata, in oxaliplatin (Ox)-sensitive and -resistant CRC cells. LCH significantly inhibited cell viability and colony growth in both Ox-sensitive and Ox-resistant CRC cells. We found that LCH decreased epidermal growth factor receptor (EGFR) and AKT kinase activities and related activating signaling proteins including pEGFR and pAKT. A computational docking model indicated that LCH may interact with EGFR, AKT1, and AKT2 at the ATP-binding sites. LCH induced ROS generation and increased the expression of the ER stress markers. LCH treatment of CRC cells induced depolarization of MMP. Multi-caspase activity was induced by LCH treatment and confirmed by Z-VAD-FMK treatment. LCH increased the number of sub-G1 cells and arrested the cell cycle at the G1 phase. Taken together LCH inhibits the growth of Ox-sensitive and Ox-resistant CRC cells by targeting EGFR and AKT, and inducing ROS generation and ER stress-mediated apoptosis. Therefore, LCH could be a potential therapeutic agent for improving not only Ox-sensitive but also Ox-resistant CRC treatment.