• Title/Summary/Keyword: regeneration failure

Search Result 91, Processing Time 0.026 seconds

Neurite Growth Inhibitory Signals in CNS (중추신경계 신경성장 억제 신호)

  • Kim Sik-Hyun;Kwon Hyuk-Cheol
    • The Journal of Korean Physical Therapy
    • /
    • v.11 no.3
    • /
    • pp.133-140
    • /
    • 1999
  • Why does the CNS not regenerate after injury? The failure of axonal regeneration in the CNS after injury is not due to an inherent inability of these neurons to regrowth axon. Recently, an inhibitory substrate effect of CNS has been discovered which could be directly invoked in the lack of regeneration. The failure of axon regrowth in the CNS is crucially influenced by the presence of neurtie growth inhibitor NI35/250 and possibly also by molecules such as myelin associated glycoprotein(MAG) and chondroitin sulphate proteoglycans(CSPGs). The application of the monoclonal antibody IN-1, which efficinetly neutralizes the N135/250 inhibitory molecules. This new finding has a strong impact on the development of, a new neuroscienctific research directed to stimulate axonal regeneration. In this review summarize the current knowledge on the factors and molecules involved in the regeneration failure.

  • PDF

A comparative clinical study on oxidized titanium implants and sandblasted large-grit acid etched implants in soft bone

  • Lee, Jun-Young;Song, Ji-Eun;Jung, Ui-Won;Kim, Chang-Sung;Choi, Seong-Ho;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.sup2
    • /
    • pp.205-212
    • /
    • 2009
  • Purpose: The aim of this retrospective study was to compare the survival rate of oxidized titanium implants and sandblasted large-grit acid etched implants in soft bone. Methods: 201 oxidized titanium implants were inserted in 84 patients between May 1999 and May 2004. 120 sandblasted large-grit acid etched implants were inserted in 74 patients between December 2000 and May 2004. The patients were followed-up 0${\sim}$5 years in ITI group or 0${\sim}$6 years in BRA group, respectively. The following information was collected from the patient records: age, gender, systemic disease, implant type, number, length and diameter of the implants, their location in the jaws, bone quantity, the number of failed implants, the causes of failure, and advanced surgery for bone augmentation. Results: In the oxidized titanium implants, 8 implants showed early failure, and 1 implant showed late failure, respectively. The cumulative survival rate was 95.48%. In the sandblasted large-grit acid etched implants, 1 implant showed late failure and cumulative survival rate was 99.10%. The cumulative survival rate and the survival rates in the case of the advanced procedure during the implant placement were not significantly different in both groups. Conclusions: Oxidized titanium implants and sandblasted large-grit acid etched implants can be used successfully in soft bone regardless of the surgical methods used during the implant placement. (J Korean Acad Periodontol 2009;39:205-212)

The factors related with the failure in GBR and GTR technique (차폐막을 이용한 치주조직 및 골조직 유도재생술의 실패요인에 대한 고찰)

  • Yeom, Hey-Ri;Ku, Young;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.1
    • /
    • pp.117-128
    • /
    • 1997
  • Using barrier membrane, guided bone regeneration(GBR) and guided tissue regeneration(GTR) of periodontal tissue are now widely studied and good results were reported. In bone regeneration, not all cases gained good results and in some cases using GTR, bone were less regenerated than that of control. The purpose of this study is to search for the method to improve the success rate of GBR and GTR by examination of the cause of the failure. For these study, rats and beagle dogs were used. In rat study, 5mm diameter round hole was made on parietal bone of the rat and 10mm diameter of bioresorbable membrane was placed on the bone defects and sutured. In 1 ,2, 4 weeks later, the rats were sacrificed and Masson-Trichrome staining was done and inspected under light microscope for guided bone regeneration. In dog study, $3{\times}4mm^2$ Grade III furcation defect was made at the 3rd and 1th premolar on mandible of 6 beagle dogs. The defects were covered by bioresorbable membrane extending 2-3mm from the defect margin. The membrane was sutured and buccal flap was covered the defect perfectly. In 2, 4. 8 weeks later. the animals were sacrificed and undecalcified specimens were made and stained by multiple staining method. In rats. there was much amount of new bone formation at 2 weeks. and in 4 weeks specimen, bony defect was perfectly dosed and plenty amount of new bone marrow was developed. In some cases, there were failures of guided bone regeneration. In beagle dogs, guided tissue regeneration was incomplete when the defect was collapsed by the membrane itself and when the rate of resorption was so rapid than expected. The cause of the failure in GBR and GTR procedure is that 1) the membrane was not tightly seal the bony defects. If the sealing was not perfect, fibrous connective tissue infiltrate into the defect and inhibit the new bone formation and regeneration. 2) the membrane was too tightly attached to the tissue and then there was no space to be regenerated. In conclusion, the requirements of the membrane for periodontal tissue and bone regeneration are the biocompatibility, degree of sealingness, malleability. space making and manipulation. In this animal study. space making for new bone and periodontal ligament, and sealing the space might be the most important point for successful accomplishment of GBR and GTR.

  • PDF

Computational Simulation by One-Dimensional Regeneration Model of Wall-Flow Monolith Diesel Particulate Filter Trap (벽-유동(Wall-Flow) 모노리스(Monolith) 디젤 입자상물질 필터 트랩의 재생모델에 의한 수치 시뮬레이션)

  • Kim, G.H.;Park, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.41-54
    • /
    • 1995
  • A mathematical model for wall-flow monolith ceramic diesel particulate filter was developed in order to describe the processes which take place in the filter during regeneration. The major output of the model comprises ceramic wall temperature and regeneration time(soot reduction). Various numerical tests were performed to demonstrate how the gas oxygen concentration, flow rate and the initial particulate trap loading affect the regeneration time and peak trap temperature. The model is shown to b in reasonable agreement with the published experimental results. This model can be applied to predict the thermal shock failure due to high temperature during combustion regeneration process.

  • PDF

Competitive Ability and Allelopathy of Ericaceous Plants as Potential Causes of Conifer Regeneration Failures (Ericaceous식물의 allelopathy와 경쟁력에 의한 침엽수 갱신 저해)

  • Mallik, A.U.
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.3
    • /
    • pp.394-405
    • /
    • 1995
  • Certain ericaceous understory plants of temperate forests proliferate following forest clearcutting and fire. Rapid vegetative growth of these plants may affect conifer regeneration due to their strong competitive abilities and allelopathic properties. Planted conifers in these shrub-dominated habitats experience "growth check" which may result in a loss of productivity or in extreme cases total failure of forest regeneration. This growth check phenomenon is exemplified in Calluna Sitca spruce Scots pine ecosystems of western Europe, Kalmia black spruce ecosystem of eastern Canada and Gaultheria-cedar/hemlock ecosystem of the Pacific Northwest of the United States. Dynamics of Kalmia black spruce ecosystem following disturbance was used to explain the mechanism of conifer growth inhibition and their regeneration failure. It is argued that in addition to competition for nutrients, Kalmia allelopathy plays a major role in growth inhibition of black spruce. This conclusion is supported by the results of various field, laboratory and greenhouse experiments. Eight phenolic compounds were isolated and identified from the leaves of Kalmia angustifolia, four of which are known to be highly phyotoxic to black spruce. Methods of overcoming the allelopathic effects of Kalmia in order to enhance black spruce regeneration in Kalmia-dominated sites are discussed.

  • PDF

Two Dimensional Automatic Quadrilateral Mesh Generation for Metal Forming Analysis (소성 가공 공정 해석을 위한 2차원 사각 요소망 자동 생성)

  • Kim, Sang-Eun;Yang, Hyun-Ik
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.3
    • /
    • pp.197-206
    • /
    • 2009
  • In a finite element analysis of the metal forming processes having large plastic deformation, largely distorted elements are unstable and hence they influence upon the result toward negative way so that adaptive remeshing is required to avoid a failure in the numerical computation. Therefore automatic mesh generation and regeneration is very important to avoid a numerical failure in a finite element analysis. In case of generating quadrilateral mesh, the automation is more difficult than that of triangular mesh because of its geometric complexity. However its demand is very high due to the precision of analysis. Thus, in this study, an automatic quadrilateral mesh generation and regeneration method using grid-based approach is developed. The developed method contains decision of grid size to generate initial mesh inside a two dimensional domain, classification of boundary angles and inner boundary nodes to improve element qualities in case of concave domains, and boundary projection to construct the final mesh.

Guided bone regeneration

  • Kim, Young-Kyun;Ku, Jeong-Kui
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.46 no.5
    • /
    • pp.361-366
    • /
    • 2020
  • Guided bone regeneration (GBR) is a surgical procedure that utilizes bone grafts with barrier membranes to reconstruct small defects around dental implants. This procedure is commonly deployed on dehiscence or fenestration defects ≥2 mm, and mixing with autogenous bone is recommended on larger defects. Tension-free primary closure is a critical factor to prevent wound dehiscence, which is critical cause of GBR failure. A barrier membrane should be rigidly fixed without mobility. If the barrier is exposed, closed monitoring should be utilized to prevent secondary infection.

Guided Bone Regeneration Using Mineralized Bone Allograft and Barrier Membrane Derived from Ox Pericardium (골유도재생술 시 비탈회 동종골와 우심막유래 차단막의 임상적 활용)

  • Lim, Hyoung-Sup;Kim, Su-Gwan;Moon, Seong-Yong;Oh, Ji-Su;Jeong, Kyung-In;Park, Jin-Ju;Jeong, Mi-Ae
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.4
    • /
    • pp.359-362
    • /
    • 2011
  • Purpose: This study evaluated the clinical applications of implant placement and guided bone regeneration using a mineralized bone allograft and a barrier membrane derived from ox pericardium Methods: From January 2007 to June 2009, among the patients who received an implant at Chosun University Dental Hospital, patients were selected if they were treated with guided bone regeneration (GBR) with simultaneous implant placement or GBR prior to implant placement. The selected patients were sorted according to the materials and membranes used in GBR, and the implant survival rate was recorded by clinical examination and reviewing the medical records and the radiographs. Each study list was analyzed by SPSS (version 12.0, SPSS Inc., USA) software and the survival rate was verified by Chi-square tests. $P$ values less than 0.05% were deemed significant. Results: 278 implants were placed on a total of 101 patients and 8 implants resulted in failure. Three implants failed among 15 implants with only a mineralized bone allograft. No failure was shown among the 74 implants placed with mineralized bone allograft and a barrier membrane derived from ox pericardium. One group of 4 implant placements showed failure among the 102 implants placed with a mineralized bone allograft and another bone graft material. The group that had a barrier membrane derived from ox pericardium with a mineralized bone allograft or other bone materials showed no implant failure. Three failures were shown among the 21 implants placed with only bone graft and not using a membrane. The group with membranes other than a barrier membrane derived from ox pericardium showed 5 failures among 170 implants. Conclusion: The implant survival rate of the group with GBR using a mineralized bone allograft was 96.3%, which meant there was little difference compared to the groups of another bone graft materials (98.9%). The implant survival rate of the group without a membrane-was 85.7% and it showed a significant difference compared to the group using a barrier membrane derived from ox pericardium (100%) and the group using another membrane (97.1%).

Delayed intentional replantation of periodontally hopeless teeth: a retrospective study

  • Lee, Eun-Ung;Lim, Hyun-Chang;Lee, Jung-Seok;Jung, Ui-Won;Kim, Ui-Sung;Lee, Seung-Jong;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • Purpose: The purpose of this study was to retrospectively evaluate the survival of periodontally hopeless teeth that were intentionally extracted and replanted after a delay and to compare the radiographic characteristics of the survival group with those of the failure group. Methods: The clinical and radiographic data from patients who underwent delayed intentional replantation between March 2000 and July 2010 were reviewed. Twenty-seven periodontally hopeless teeth were extracted and preserved in medium supplemented with antibiotics for 10-14 days. The teeth were then repositioned in the partially healed extraction socket and followed for 3 to 21 months. The radiographic parameters were analyzed using a paired t test and the cumulative survival rate was analyzed using Kaplan-Meier analysis. Results: Seven replanted teeth failed and the overall cumulative survival rate was 66.4%. In the survival group, the amount of bone loss was reduced from 68.45% to 34.66% three months after replantation. There was radiologic and clinical evidence of ankylosis with 5 teeth. However, no root resorption was found throughout the follow-up period. In the failure group, bone formation occurred from the bottom of the socket. However, a remarkable radiolucent line along the root of a replanted tooth existed. The line lengthened and thickened as time passed. Finally, in each case of failure, the tooth was extracted due to signs of inflammation and increased mobility. Conclusions: Delayed intentional replantation has many advantages compared to immediate intentional replantation and could serve as an alternative treatment for periodontally involved hopeless teeth. However, techniques for maintaining the vitality of periodontal structures on the tooth surface should be developed for improved and predictable results.

A Development of the Optimization Model for Reactive Scheduling Considering Equipment Failure (장치이상을 고려한 동적 생산계획 최적화 모델 개발)

  • Ha, Jin-Kuk;Lee, Euy Soo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.571-578
    • /
    • 2005
  • We propose a new optimization framework for the reactive scheduling. The proposed rescheduling scheme is specially focused on how to generate rescheduling results when equipment failure occurs. The approach is based on a continuous-time problem representation that takes into account the schedule in progress, the updated information on the batches still to be processed, the present plant state, the deviations in plant parameters and the time data. To update the predictive scheduling, we used right shift rescheduling and total regeneration when equipment failure occurs. And, a practical solution to the rescheduling problem requires satisfaction of two often confliction measures: the efficiency measure that evaluates the satisfaction of a desired objective function value and the stability measure that evaluates the amount of change between the schedules before and after the disruption. In this paper, the efficiency is measured by the makespan of all jobs in the system. And, the stability is measured by the percentage change in makespan and the modified sequence deviation in the predictive scheduling and rescheduling.