• 제목/요약/키워드: regeneration energy

검색결과 356건 처리시간 0.032초

Efficient plant regeneration from immature embryo cultures of Jatropha curcas, a biodiesel plant

  • Varshney, Alok;Johnson, T. Sudhakar
    • Plant Biotechnology Reports
    • /
    • 제4권2호
    • /
    • pp.139-148
    • /
    • 2010
  • Jatropha curcas L. (Physic nut) is a commercially important non-edible oil seed crop known for its use as an alternate source of biodiesel. In order to investigate the morphogenic potential of immature embryo, explants from four developmental stages were cultured on medium supplemented with combinations of auxins and cytokinins. It was found that the size of embryo is critical for the establishment of callus. Immature embryos (1.1-1.5 cm) obtained from the fruits 6 weeks after pollination showed a good response of morphogenic callus induction (85.7%) and subsequent plant regeneration (70%) with the maximum number of plantlets (4.7/explant) on Murashige and Skoog's (MS) medium supplemented with IBA (0.5 $mg\;l^{-1}$) and BA (1.0 $mg\;l^{-1}$). The above medium when supplemented with growth adjuvants such as 100 $mg\;l^{-1}$ casein hydrolysate + 200 $mg\;l^{-1}$ L-glutamine + 8.0 $mg\;l^{-1}$ $CuSO_4$ resulted in an even higher frequency of callus induction (100%). Plant regeneration (90%) with the maximum number of plantlets (10/explant) was achieved on MS medium supplemented with 500 $mg\;l^{-1}$ polyvinyl pyrrolidone + 30 $mg\;l^{-1}$ citric acid + 1 $mg\;l^{-1}$ BA + 0.5 $mg\;l^{-1}$ Kn + 0.25 $mg\;l^{-1}$ IBA. It was observed that plantlet regeneration could occur either through organogenesis of morphogenic callus or via multiplication of pre-existing meristem in immature embryos. The age of immature embryos and addition of a combination of growth adjuvants to the culture medium appear to be critical for obtaining high regeneration rates. Well-developed shoots rooted on half-halfstrength MS medium supplemented with 0.5 $mg\;l^{-1}$ IBA and 342 $mg\;l^{-1}$ trehalose. The rooted plants after acclimatization were successfully transferred to the field in different agro-climatic zones in India. This protocol has been successfully evaluated on five elite lines of J. curcas.

The Establishment of Tumor Necrosis Factor Receptor-associated Protein1 (TRAP1) Transgenic Mice and Severe Fat Accumulation in the Liver of TRAP1 Mice during Liver Regeneration

  • Im, Chang-Nim;Zheng, Ying;Kim, Sun Hye;Huang, Tai-Qin;Cho, Du-Hyong;Seo, Jeong-Sun
    • Interdisciplinary Bio Central
    • /
    • 제5권4호
    • /
    • pp.9.1-9.7
    • /
    • 2013
  • Introduction: Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a mitochondrial heat shock protein (HSP), which belongs to HSP90 family. It plays important roles in regulating mitochondrial integrity, protecting against oxidative stress, and inhibiting cell death. Recent studies suggest that TRAP1 is linked to mitochondria and its metabolism. In this study, we established TRAP1 transgenic mice and performed partial hepatectomy (PH) on wild-type (WT) and TRAP1 transgenic mice to investigate the function of TRAP1 during liver regeneration. Results and Discussion: We found that TRAP1 was highly expressed in liver as well as kidney. In addition, liver regeneration slightly decreased together with increased fatty liver and inflammation at 72 hr after PH in TRAP1 transgenic mice compared with WT control group mice. Concomitantly, we observed decreased levels of p38 protein in TRAP1 transgenic mice compared with WT control group mice. These results suggest that TRAP1 plays a critical role in liver energy balance by regulating lipid accumulation during liver regeneration. Conclusions and Prospects: To our knowledge, we reported, for the first time, that liver regeneration slightly reduced together with increased fat accumulations after PH in TRAP1 transgenic mice compared with WT control group mice. Concomitantly, we observed decreased levels of p38 protein in TRAP1 transgenic mice compared with WT control group mice. Overexpression of TRAP1 might affect liver regeneration via disturbing mitochondrial function leading to fatty liver in vivo.

가변 주파수 Sono-Fenton 산화를 이용한 Spent-GAC 재생기술 (Spent-GAC Regeneration Using Variable Frequency Sono-Fenton Oxidation)

  • 주수빈;이상민;김형준;심인태;김희진
    • 대한토목학회논문집
    • /
    • 제43권4호
    • /
    • pp.449-458
    • /
    • 2023
  • 용존 유기물을 흡착 제거하는 기술로서, 흡착능이 우수한 입상활성탄을 우선적으로 적용할 수 있지만, 흡착탑의 운전기간에 따라 GAC의 흡착능이 현저히 저하되어 파과되는 한계가 있으며 파과된 활성탄인 spent-GAC는 교체나 재생이 불가피하다. 활성탄 교체는 비용의 경제성 때문에 기피되며 상업적으로 열재생법을 사용하고 있으나, 800℃ 이상의 고온 조건으로 인한 높은 에너지 비용과 활성탄의 질량 손실이 발생하는 단점이 있다. 본 연구에서는 CSOs내의 용존 유기물 처리에 사용된 spent-GAC의 재생효율을 제고하기 위해, Fenton 산화법과 초음파 산화를 융합한 다중산화기술인 Sono-Fenton 방법을 적용하였고, 산화제 주입농도와 초음파 주파수별 spent-GAC의 재생효율을 조사하였다. 적용된 Sono-Fenton 처리에서 Fe2+ 10 mmol/L, H2O2 농도 1,000 mmol/L, 120분 초음파 주사시간, 초음파 주파수 40 kHz 재생처리 조건에서 68.5%의 가장 높은 재생효율을 얻을 수 있었고, 750 kHz에서도 유사한 효율을 얻을 수 있었으며, 다른 주파수의 초음파는 재생효율이 불량했고 주파수의 크기와 GAC 재생효율은 선형 관계를 나타내지 않았다. 실 하수를 희석하여 제조한 CSOs로 GAC 흡착탑을 연속운전 한 경우, 재생없이 700시간 내외의 운전이 가능했고 1회의 Sono-Fenton 처리를 적용한 결과, 총 1,000시간의 GAC 흡착 운전 기간 동안 40~70%의 CODcr 제거 효율이 확보하였다.

탄소침적으로 피독된 탈질 촉매의 재생에 관한 연구 (A Study on the Regeneration of SCR Catalyst Deactivated by Unburned Carbon Deposition)

  • 문승현;이승재;유인수
    • 대한환경공학회지
    • /
    • 제32권10호
    • /
    • pp.928-935
    • /
    • 2010
  • 폐 목재 소각 보일러 배가스로부터 질소산화물을 저감하기 위하여 설치된 선택적촉매환원 공정의 시운전 중에 전단에 설치된 여과포의 일부 소실이 발생되었다. 여과포 소실에 따른 불완전 연소 가스는 2단으로 설치된 저온 탈질촉매 표면을 미연탄소로 침적시켜 촉매의 탈질 효율을 급격히 저감시켰다. 활성 저하의 원인 분석을 위하여 XRD, EDX, BET, TGA, SEM 등 다양한 특성 분석을 실시하였다. 재생 방법으로 산 세척, 초음파 수 세척, 공기 중 소성의 방법을 적용한 결과, 공기분위기에서 $450^{\circ}C$로 2시간 소성하는 것이 최적조건 임을 밝혀내었다. 재생된 촉매는 2 cm ${\times}$ 2 cm ${\times}$ 10 cm(촉매 무게 10 g) Honeycomb 촉매 시료를 이용하여 활성을 측정한 결과 사용 전 촉매와 동일한 수준의 활성인 $180^{\circ}C$에서 NOx저감 효율 100%를 나타내었다.

가변 유압모터를 이용한 전동지게차 리프트회생 효율에 관한 연구 (A Study on the Regeneration Efficiency of the Electric Forklift Using the Variable Hydraulic Motor)

  • 박용수;어영소;윤진수;도 찌 끄엉;한성민;신정우;유충목;안경관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권3호
    • /
    • pp.26-32
    • /
    • 2020
  • In modern society, the energy-saving problem of industrial vehicles is economically and environmentally critical. Energy savings using the potential energy of forklifts are one of the viable solutions to resolving this problem. The basic concept of this study is to operate the hydraulic motor and recharge the battery using the flow rate from the cylinder when loading heavy objects and lowering the fork. To save energy, the torque and rotational speed of the generator should be optimized according to the load and descent speed to increase efficiency. To this end, we propose a system that optimizes energy saving efficiency by controlling the swashplate angle of the variable hydraulic motor through the GA(Genetic-Algorithm). The results were verified by building and comparing fixed motor models and variable motor models using the AMEsim. The results of the study show that the proposed optimized swashplate angle increases the energy saving efficiency by approximately 6%-8%, depending on the working conditions.

왜성 변이 품종 '꼬마' 무궁화의 캘러스 유도 및 지상부 형성에 식물생장조절물질이 미치는 영향 (The Effect of Plant Growth Regulators on Callus Induction and Shoot Regeneration from the Dwarf Type Variety, Hibiscus syriacus L.var. Ggoma)

  • 이지연;강은정;김상훈;김동섭;김진백;하보근;강시용
    • 방사선산업학회지
    • /
    • 제5권3호
    • /
    • pp.231-236
    • /
    • 2011
  • 'Ggoma' is a new Hibiscus dwarf type variety developed by gamma irradiation at the Korea Atomic Energy Research Institute (KAERI). This study was conducted to determine the best optimum cultural callus formation and shoot regeneration condition. Sterilized leaf tissues were cultured on MS (Marashige and skoog's) medium containing 3% sucrose, 0.8% agar with different concentration and combination of TDZ, 2, 4-D, KT, BA, and 2iP for 4 weeks in vitro culture. MS medium containing 2,4-D $0.1mg\;l^{-1}$ and BA $0.5mg\;l^{-1}$ were most effective on callus formation and growth. After 4 weeks, callus was transferred on BA (0.5, 1, $1.5mg\;l^{-1}$) and TDZ (0.1, 0.2, $0.3mg\;l^{-1}$) for shoot formation. The best condition for inducing the shoot from callus was BA $1.5mg\;l^{-1}$ and TDZ $0.3mg\;l^{-1}$. This result will be useful for the rapid multiplication of Hibiscus syriacus L.var. Ggoma.

에너지저장시스템의 서울메트로 2호선 적용 효과에 관한 연구 (A Study on Effect of Applying Energy Storage System on SeoulMetro Line 2)

  • 안천헌;이한민;김길동;이희성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.966-971
    • /
    • 2009
  • The recent environmental protection trend requires more strict energy saving, therefore every transportation system should reduce energy consumption to the minimum value. High-efficiency operation system, energy saving and CO2 emissions shall be addressed as important issue in railway system. These issues are the most essential factors of railway, compared to major public transportation system. Recently, saving energy in the electric railway system has been studied. For such new energy saving, the Energy storage system is considered for saving energy. Energy saving is possible by efficient use of regenerated energy. Regenerated energy is recycled amongst vehicles by mean of charge and discharge corresponding to powering and braking of electric vehicle operations. This energy saving contributes to cut CO2 to reduce greenhouse gas emissions. Recycling regenerated energy demonstrate significant effect on peak cut of consumption energy in railway substation. Absorption of excess energy avoids regeneration failure due to high traction voltage. This paper presents effects by applying the energy storage system to SeoulMetro Line 2.

  • PDF

SEWGS 공정용 CO2 흡수제들의 흡수능력에 미치는 조업변수들의 영향 (Effects of Operating Variables on Sorption Capacity of CO2 Absorbents for SEWGS Process)

  • 류호정;김효성;이승용;이동호;김재창
    • Korean Chemical Engineering Research
    • /
    • 제50권6호
    • /
    • pp.994-1001
    • /
    • 2012
  • SEWGS 공정에 사용하기 위해 개발된 두 종류의 $CO_2$ 흡수제(PKM1-SU, P4-600)에 대해 가압 회분식 유동층 반응기를 사용하여 각 흡수제의 반응성에 미치는 조업변수의 영향을 측정 및 해석하였다. PKM1-SU 입자와 P4-600 입자 모두 흡수-재생 반복횟수가 증가함에 따라 흡수능이 감소하는 경향을 나타내었으며 $CO_2$ 흡수능력 측면에서는 PKM1-SU 입자가 우수한 성능을 나타내었으나 재생반응온도와 재생반응속도 측면에서는 P4-600 입자가 우수한 것으로 나타났다. PKM1-SU 입자는 스팀농도가 증가함에 따라 $CO_2$ 흡수능이 증가하였으나 P4-600 입자의 경우 스팀농도 5%에서 10%로 증가함에 따라 $CO_2$ 흡수능이 증가한 후 거의 일정한 경향을 나타내었다. 두 흡수제 모두 최종 재생온도가 증가함에 따라 $CO_2$ 흡수능이 증가하는 경향을 나타내었으며 PKM1-SU 입자의 경우 15 bar 이상에서는 압력이 증가함에 따라 $CO_2$ 흡수능력이 급격히 증가하는 경향을 나타내었다.

회생제동 전자제어 유압모듈을 이용한 하이브리드 차량의 에너지 회수 알고리즘 개발 (Development of Energy Regeneration Algorithm using Electro-Hydraulic Braking Module for Hybrid Electric Vehicles)

  • 여훈;김현수;황성호
    • 유공압시스템학회논문집
    • /
    • 제5권4호
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, an energy regeneration algorithm is proposed to make the maximum use of the regenerative braking energy for a parallel hybrid electric vehicle(HEV) equipped with a continuous variable transmission(CVT). The regenerative algorithm is developed by considering the battery state of charge(SOC), vehicle velocity and motor capacity. The hydraulic module consists of a reducing valve and a power unit to supply the front wheel brake pressure according to the control algorithm. In order to evaluate the performance of the regenerative braking algorithm and the hydraulic module, a hardware-in-the-loop simulation (HILS) is performed. In the HILS system, the brake system consists of four wheel brakes and the hydraulic module. Dynamic characteristics of the HEV are simulated using an HEV simulator. In the HEV simulator, each element of the HEV powertrain such as internal combustion engine, motor, battery and CVT is modelled using MATLAB/$Simulink^{(R)}$. In the HILS, a driver operates the brake pedal with his or her foot while the vehicle speed is displayed on the monitor in real time. It is found from the HILS that the regenerative braking algorithm and the hydraulic module suggested in this paper provide a satisfactory braking performance in tracking the driving schedule and maintaining the battery state of charge.

  • PDF

Adsorption of Heavy Metal Ions onto Chemically Oxidized Ceiba pentandra (L.) Gaertn. (Kapok) Fibers

  • Chung, Byung-Yeoup;Cho, Jae-Young;Lee, Min-Hee;Wi, Seung-Gon;Kim, Jin-Hong;Kim, Jae-Sung;Kang, Phil-Hyun;Nho, Young-Chang
    • Journal of Applied Biological Chemistry
    • /
    • 제51권1호
    • /
    • pp.28-35
    • /
    • 2008
  • The physico-chemical properties of kapok fibers were altered via the combination processes of chlorite-periodate oxidation, in order to assess their efficacy as a heavy metal adsorbent. The chemically-oxidized kapok fibers were found to harbor a certain amount of polysaccharides, together with lowered lignin content. This alteration in lignin characteristics was clearly confirmed via FTIR and NBO yield. Moreover, chemically oxidized kapok fibers retained their hollow tube shape, although some changes were noted. The chemically oxidized kapok fibers evidenced elevated ability to adsorb heavy metal ions with the best fit for the Langmuir adsorption isotherm model. Three cycles of adsorption-desorption were conducted with in-between regeneration steps. Our experimental results indicated that chemically oxidized kapok fibers possessed excellent adsorption characteristics, and the modified kapok fibers could be completely regenerated with almost equimolar diluted sodium hydroxide. Pb, Cu, Cd and Zn ions evidenced adsorption rates of 93.55%, 91.83%, 89.75%, and 92.85% on the chemically oxidized kapok fibers. The regeneration efficiency showed 73.58% of Pb, 71.55% of Cu, 66.87% of Cd, and 75.00% of Zn for 3rd cycle with 0.0125N NaOH.