• Title/Summary/Keyword: reforming reaction

Search Result 294, Processing Time 0.029 seconds

A Study on the Reaction Optimization for the Utilization of CO2 and CH4 from Bio-gas (바이오가스에서 CO2/CH4 활용에 관한 반응최적화 연구)

  • KHO, DONGHYUN;CHO, WOOKSANG;BAEK, YOUNGSOON
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.5
    • /
    • pp.554-561
    • /
    • 2016
  • Depending on the Bio-gas sources, main component gases of $CH_4$ and $CO_2$ are shown to be variously present in amounts. For the anaerobic digester, The concentration of $CH_4$ and $CO_2$ in the gases are 60~70 and 30~35 vol%. For the landfill gas, $CH_4$ and $CO_2$ are 40~60 and 40~60 vol%. For the food wastes, $CH_4$ and $CO_2$ are 60~80 and 20~40 vol%, respectively. In this study, maximum conversion rates of $CO_2$ were obtained from the variety of concentrations of $CH_4$ and $CO_2$ by the catalysts of reforming reactions. Moreover, in order to get maximum producing amount of synthetic gas, experimental studies were performed to optimize the reaction variables. On the basis of $CH_4$, 243 ml, R [$CH_4/(O2+CO_2)$] value were varied from 0.8 to 1.35, in the study of $CH_4$ and $CO_2$ reforming reactions. It was shown that the optimal results were obtained for 1.35 of R value. And also, at $850^{\circ}C$ and 1 atm, the production rate of synthetic gas was 90% and the conversion rates of $CH_4$ and $CO_2$ were higher than 99% and 90%, respectively.

Kinetic Investigation of CO2 Reforming of CH4 over Ni Catalyst Deposited on Silicon Wafer Using Photoacoustic Spectroscopy

  • Yang, Jin-Hyuck;Kim, Ji-Woong;Cho, Young-Gil;Ju, Hong-Lyoul;Lee, Sung-Han;Choi, Joong-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1295-1300
    • /
    • 2010
  • The $CO_2-CH_4$ reaction catalyzed by Ni/silicon wafers was kinetically studied by using a photoacoustic technique. The catalytic reaction was performed at various partial pressures of $CO_2$ and $CH_4$ (50 Torr total pressure of $CO_2/CH_4/N_2$) in the temperature range of 500 - $650^{\circ}C$ in a static reactor system. The photoacoustic signal that varied with the $CO_2$ concentration during the catalytic reaction was recorded as a function of time. Under the reaction conditions, the $CO_2$ photoacoustic measurements showed the as-prepared Ni thin film sample to be inactive for the reaction, while the $CO_2/CH_4$ reactions carried out in the presence of the sample pre-treated in $H_2$ at $600^{\circ}C$ were associated with significant time-dependent changes in the $CO_2$ photoacoustic signal. The rate of $CO_2$ disappearance was measured from the $CO_2$ photoacoustic signal data in the early reaction period of 50 - 150 sec to obtain precise kinetic data. The apparent activation energy for $CO_2$ consumption was determined to be 6.9 kcal/mol from the $CO_2$ disappearance rates. The partial reaction orders, determined from the $CO_2$ disappearance rates measured at various $PCO{_2}'S$ and $PCH{_4}'S$ at $600^{\circ}C$, were determined to be 0.33 for $CH_4$ and 0.63 for $CO_2$, respectively. Kinetic data obtained in these measurements were compared with previous works and were discussed to construct a catalytic reaction mechanism for the $CO_2-CH_4$ reaction over Ni/silicon wafer at low pressures.

The Methane Reforming by $CO_2$ Using Pelletized Co-Ru-Zr-Si Catalyst (성형 Co-Ru-Zr-Si 촉매를 이용한 이산화탄소에 의한 메탄 리포밍)

  • Nam, Jeong-Kwang;Lee, Ji-Hye;Song, Sang-Hoon;Ahn, Hong-Chan;Chang, Tae-Sun;Suh, Jeong-Kwon;Kim, Seong-Bo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.176-182
    • /
    • 2012
  • The methane dry reforming has received the considerable attention in recent years, mainly as an attractive route to produce synthesis gas (CO, $H_2$) from green-house gases ($CH_4$, $CO_2$) for resources. However, this process has not been commercialized due to the high temperature and catalyst deactivation. In this study, Co-Ru-Zr catalysts supported on $SiO_2$ were studied for the characterization of methane dry reforming reaction and the preliminary data for process development were achieved. The crystal structure of catalysts was measured by XRD, the surface area and pore size were analyzed by BET, and the element composition of catalyst were analyzed by EDS. Conversions of methane and carbon dioxide were analyzed by GC. In addition, reaction rate constants were obtained from the reaction kinetic study and the optimum catalyst size that does not affect mass transfer from reactants was also determined. The selected pellet-type catalyst maintained activation for 720 h at $850^{\circ}C$.

Effect of Ce/Zr Ratios on Ni/CeO2-ZrO2 Catalysts in Steam Reforming of Methane Reaction (Ce/Zr 비율에 따른 Ni/CeO2-ZrO2 촉매가 메탄의 수증기 개질 반응에서 미치는 영향)

  • In Ho Seong;Kyung Tae Cho;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.125-131
    • /
    • 2024
  • In this study, synthesized Ni/CexZr1-xO2 catalysts were coated on the surface of honeycomb metalic monoliths to investigate catalytic activity in steam reforming of methane reactions. Supports with varying Ce/Zr ratios were synthesized to observe their behavior in the reforming reaction, and catalysts with Ni contents ranging from 5 wt% to 20 wt% were prepared to analyze the effect of Ni loading contents on catalytic activity. The catalysts were characterized by XRD, BET, TPR, and SEM. The TPR analysis indicated the formation of Ni-Ce-Zr oxide with a strong interaction between the active metal Ni and CeO2-ZrO2 support. The 15 wt% Ni/Ce0.80Zr0.20O2 catalyst exhibited the highest activity and stability in the steam reforming of methane reaction. Catalysts with enhanced activity and stability were synthesized by manufacturing composite materials using excellent oxygen storage and donor properties of CeO2 and the thermal properties of ZrO2.

Study on the development of small-scale hydrogen production unit using steam reforming of natural gas (천연가스 개질 방식 중소형 고순도 수소제조 장치 개발 연구)

  • Seo, Dong-Joo;Chue, Kuck-Tack;Jung, Un-Ho;Park, Sang-Ho;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.720-722
    • /
    • 2009
  • This work is mainly focused at developing the hydrogen production unit with the capacity of 20 $Nm^3/h$ of high purity hydrogen. At present steam reforming of natural gas is the preferable method to produce hydrogen at the point of production cost. The developed hydrogen production unit composed of natural gas reformer and pressure swing adsorption system. To improve the thermal efficiency of steam reforming reactor, the internal heat recuperating structure was adopted. The heat contained in reformed gas which comes out of the catalytic beds recovered by reaction feed stream. These features of design reduce the fuel consumption into burner and the heat duty of external heat exchangers, such as feed pre-heater and steam generator. The production rate of natural gas reformer was 41.7 $Nm^3/h$ as a dryreformate basis. The composition of PSA feed gas was $H_2$ 78.26%, $CO_2$ 18.49%, CO 1.43% and $CH_4$ 1.85%. The integrated production unit can produce 21.1 $Nm^3/h$ of high-purity hydrogen (99.997%). The hydrogen production efficiency of the developed unit was more than 58% as an LHV basis.

  • PDF

The Characteristics of Solar Thermochemical Methane Reforming using Ferrite-based Metal Oxides (페라이트계 금속산화물을 이용한 태양 열화학 메탄 개질 특성)

  • Cha, Kwang-Seo;Lee, Dong-Hee;Jo, Won-Jun;Lee, Young-Seok;Kim, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.45-48
    • /
    • 2007
  • Thermochemical 2-step methane reforming, involving the reduction of metal oxide with methane to produce syn-gas and the oxidation of the reduced metal oxide with water to produce pure hydrogen, was investigated on ferrite-based metal oxide mediums and $WO_{3}/ZrO_{2}$. Thermochemical 2-step methane reforming were accomplished at 900 $^{\circ}C$(syn-gas production step) and 800 $^{\circ}C$(water-splitting step). In syn-gas production step, it appeared carbon deposition on metal oxides with increasing react ion time. Various mediums showed the different starting point of carbon deposition each other. To minimize the carbon deposition, the reaction time was controlled before the starting point of carbon deposition. As a result, $CO_{x}$ were not evolved in water-splitting step, Among the various metal oxides, $Mn-ferrite/ZrO_{2}$ showed high reactivity, proper $H_{2}/CO$ ratio, high selectivity of undesired $CO_{2}$ and high evolution of $H_{2}$.

  • PDF

Effects of $CO_2$ and $O_2$ Addition on Methane Dry Reforming Using Arc-Jet Plasma Reactor (아크제트 플라즈마를 이용한 메탄건식개질 반응에서 $CO_2$$O_2$ 첨가의 영향)

  • Hwang, N.K.;Cha, M.S.;Song, Y.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.47-53
    • /
    • 2008
  • The reaction mechanism of methane dry reforming has been investigated using an arc-jet reactor. The effects of input power, $CO_2/CH_4$ and added $O_2$ were investigated by product analysis, including CO, $H_2$, $C_{2}H_{Y}$ and $C_{3}H_{Y}$ as well as $CH_4$ and $CO_2$. In the process, input electrical power activated the reactions between $CH_4$ and $CO_2$ significantly. The increased feed ratio of the $CO_2$ to $CH_4$ in the dry reforming does not affect to the $CH_4$ conversion. but we could observe increase in CO selectivity together with decreasing $H_2$ generation. Added oxygen can also increase not only CO selectivity but also $CH_4$ conversion. However, hydrogen selectivity was decreased significantly due to a increased $H_{2}O$ formation.

  • PDF

A study on the Reforming of Methane by Carbon Dioxide on the Transition Metal Catalysts Supported Zeolite (제올라이트에 담지된 전이금속 촉매상에서 메탄의 이산화탄소 개질반응에 관한 연구)

  • Jeong, Heon-Do;Kim, Kweon-lll;Kim, Tae-Hwan;Lee, Byum-Suk;Park, Jong-Ki
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.1
    • /
    • pp.69-80
    • /
    • 2003
  • Nickel catalyst has been used for natural gas reforming with carbon dioxide, In this study, catalyst support used was HY zeolite. The optimum loading of Ni in the catalysts was 13 wt%. The effect of promoters, such as Mg, Mn, and K, was also studied. The addition of promoters to Ni catalyst improved the stability of catalysts and carbon deposition on Ni catalyst was suppressed. The reforming reactivity of promoter-added Ni catalyst was higher than that of Ni catalyst without any promoters. SEM, XRD, BET, TGA and FTIR tests were tried to characterize the catalyst structure before and after reaction.

Study on Characteristic of Methane Reforming and Production of Hydrogen using GlidArc Plasma (GlidArc 플라즈마를 이용한 메탄의 개질 특성 및 수소 생산에 관한 연구)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.942-948
    • /
    • 2007
  • Popular techniques for producing hydrogen by converting methane include steam reforming and catalyst reforming. However, these are high temperature and high pressure processes limited by equipment, cost and difficulty of operation. Low temperature plasma is projected to be a technique that can be used to produce high concentration hydrogen from methane. It is suitable for miniaturization and fur application in other technologies. In this research, the effect of changing each of the following variables was studied using an AC GlidArc system that was conceived by the research team: the gas components ratio, the gas flow rate, the catalyst reactor temperature and voltage. Results were obtained for methane and hydrogen yields and intermediate products. The system used in this research consisted of 3 electrodes and an AC power source. In this study, air was added fur the partial oxidation reaction of methane. The result showed that as the gas flow rate, the catalyst reactor temperature and the electric power increased, the methane conversion rate and the hydrogen concentration also increased. With $O_2/C$ ratio of 0.45, input flow rate of 4.9 l/min and power supply of 1 kW as the reference condition, the methane conversion rate, the high hydrogen selectivity and the reformer energy density were 69.2%, 32.6% and 35.2% respectively.

Solar $CO_2$ Reforming of Methane Using $Ni/{\gamma}-Al_2O_3/Metallic$ foam device ($Ni/{\gamma}-Al_2O_3/Metallic$ device를 이용한 고온 태양열 메탄-이산화탄소 개질반응)

  • Shin, Il-Yoong;Lee, Ju-Han;Lee, Jin-Gyu;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.275-281
    • /
    • 2011
  • Solar reforming of methane with $CO_2$ was successfully tested with a direct irradiated absorber on a parabolic dish capable of $5kW_{th}$ solar power. The new type of catalytically activated metallic foam absorber was prepared, and its activity was tested. Ni was applied as the active metal on the gamma - alumina coated Ni metal foam for the preparation of the catalytically-activated metal foam layer. Compared to conventional direct irradiation of the catalytically-activated ceramic foam absorber, this new metallic foam absorber is found to exhibit a superior reaction performance at the relatively low insolation or at low temperatures. In addition, unlike direct irradiation of the catalytically-activated ceramic foam absorber, metallic foam absorber has better thermal resistance, which prevents the emergence of cracks caused by mechanical or thermal shock. The total solar power absorbed reached up to 2.1kW and the maximum $CH_4$ conversion was almost 40%.

  • PDF