• Title/Summary/Keyword: reflector design

Search Result 329, Processing Time 0.029 seconds

Design and Characteristics of Shaped ADE Reflector Antennas (경면수정 ADE 반사경 안테나의 설계 및 그 특성)

  • 최학근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.1
    • /
    • pp.122-132
    • /
    • 1999
  • In this paper, a shaped small-size ADE(Axially Displaced Ellipse) reflector antenna of 30 cm in diameter operating from 37 to 40 GHz was designed. The experimental antenna was manufactured, and the radiation characteristics evaluated. In the procedure of antenna design, aperture field distribution was assumed to uniform + parabolic distribution. And the variations of beam width, aperture efficiency, and sidelobe level as functions of aperture field distributions were investigated, and these results presented to be used in antenna design. The measured gain and sidelobe level of experimental antenna were found 39.9 dBi(efficiency : 61.9%) and -18.8 dB for 40 GHz. These values show good agreement in design goal of efficiency more than 60% and sidelobe level less than -20 dB.

  • PDF

Development of a Movable Drawer Type Light-Shelf with Adjustable Depth of the Reflector (반사판의 폭 조절이 가능한 서랍형 타입의 가동형 광선반 개발 연구)

  • Kim, Dasom;Lee, Haengwoo;Seo, Janghoo;Kim, Yongseong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.9
    • /
    • pp.343-349
    • /
    • 2016
  • Due to the recent increase in lighting energy consumption in buildings, there are a growing number of studies seeking solutions this problem. The effectiveness of light-shelves as natural lighting systems to solve this problem has been recognized, and various studies regarding such systems are being carried out currently. However, the lighting efficiency of light-shelves decreases if illumination intensity is low-such as at night time, and it also obstructs the views of building occupants. Therefore, the purpose of this study is to examine a movable drawer type light-shelf which allows for the width of the reflector to be adjusted and verify its performance through a simulated test-bed. The following conclusions were reached. 1) The purpose of this study is to solve the problem previously associated with the light-shelf system- of obstructed views-by responding to external environments and minimizing the width of the light-shelf at night time when the efficiency of the light-shelf declines. 2) The proper variables of the movable drawer type light-shelf which enables the width adjustment of the reflector were ascertained in this study according to four solar terms : a width of 0.6 m at an angle of $20^{\circ}$, a width of 0.4m with an angle of $20^{\circ}$, and a width of 0.1 m with an angle of $20^{\circ}$ were determined for the summer solstice, fall/spring equinoxes, and winter solstice respectively; revealing that width adjustment of the light-shelf is a significant factor. 3) The movable drawer type light-shelf which enables${\backslash}$width adjustment of the reflector suggested in this study can reduce the lighting energy consumption by 18.7% and 14.3% in comparison to previous light-shelves with a fixed width of 0.3 m and 0.6m, indicating that it is effective for saving energy.

Optical Design of a Reflecting Omnidirectional Vision System for Long-wavelength Infrared Light (원적외선용 반사식 전방위 비전 시스템의 광학 설계)

  • Ju, Yun Jae;Jo, Jae Heung;Ryu, Jae Myung
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.2
    • /
    • pp.37-47
    • /
    • 2019
  • A reflecting omnidirectional optical system with four spherical and aspherical mirrors, for use with long-wavelength infrared light (LWIR) for night surveillance, is proposed. It is designed to include a collecting pseudo-Cassegrain reflector and an imaging inverse pseudo-Cassegrain reflector, and the design process and performance analysis is reported in detail. The half-field of view (HFOV) and F-number of this optical system are $40-110^{\circ}$ and 1.56, respectively. To use the LWIR imaging, the size of the image must be similar to that of the microbolometer sensor for LWIR. As a result, the size of the image must be $5.9mm{\times}5.9mm$ if possible. The image size ratio for an HFOV range of $40^{\circ}$ to $110^{\circ}$ after optimizing the design is 48.86%. At a spatial frequency of 20 lp/mm when the HFOV is $110^{\circ}$, the modulation transfer function (MTF) for LWIR is 0.381. Additionally, the cumulative probability of tolerance for the LWIR at a spatial frequency of 20 lp/mm is 99.75%. As a result of athermalization analysis in the temperature range of $-32^{\circ}C$ to $+55^{\circ}C$, we find that the secondary mirror of the inverse pseudo-Cassegrain reflector can function as a compensator, to alleviate MTF degradation with rising temperature.

Design and Fabrication of butt-coupled(BT) sampled grating(SG) distributed bragg reflector(DBR) laser diode(LD) using planar buried heterosture(PBH) (저 전류 및 고 효율로 동작하는 양자 우물 매립형 butt-coupled sampled grating distributed bragg reflector laser diode 설계 및 제작)

  • Oh Su Hwan;Lee Chul-Wook;Kim Ki Soo;Ko Hyunsung;Park Sahnggi;Park Moon-Ho;Lee Ji-Myon
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.5
    • /
    • pp.469-474
    • /
    • 2004
  • We have fabricated and designed wavelength-tunable sampled grating distributed Bragg reflector laser diodes(SGDBR-LD) by using, for the first time, planar buried heterostructures(PBH). The diodes have low threshold current values and high-performance of laser operation. Growth condition using metal organic chemical vapor deposition(MOCVD) was optimized for the formation of a good butt-coupling at the interface. A maximum output power of the fabricated device was 20 mW under 200 mA continuous wave(CW) operation at $25^{\circ}C$. Average threshold current and voltage were 12 mA and 0.8 V, approximately. This output power is higher than those of ridge waveguide(RWG) and buried ridge stripe(BRS) structures by amounts of 9 mW and 13 mW, respectively. We obtained a tuning range of 44.4nm which is well matched with the target value of our design. The side mode suppression ratio of more than 35 dB was obtained for the whole tuning range. Optical output power variation was less than 5 dB, which is 4 dB smaller than that of RWG structures.

Design of Dipole Array Antennas for PCS/IMT-2000 (PCS/IMT-2000을 위한 다이폴 배열 안테나의 설계)

  • 최학윤
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.873-881
    • /
    • 2002
  • In this paper, the rectangular reflector antenna with 8-dipole array for PCS band (1,750 MHz ~ l,870 MHz) and IMT-2000 band(1,885 MHz ~ 2,200 MHz) is designed and the radiation characteristics are analyzed using the method of moments and HFSS(High Frequency Structure Simulator). To verify the analysis results, rectangular reflector antenna with 8-dipole array is fabricated and the calculated results are compared with the measured results. The measured results show good agreement with the calculated results. As a result of measurements, bandwidth(VSWR< 1.5) of 450 MHz is achieved at PCS and IMT-2000 band and gain is 16 dBi. The designed antenna can be used as the base station antenna for PCS/IMT-2000.

Safety Reflectors in Children's Wear - The Proper Position for Improving Visibility - (재귀반사 안전소재를 활용한 아동복 개발에 관한 연구 - 가시성 향상을 위한 적절한 위치 파악을 중심으로 -)

  • Jung, Jin-A;Cho, Jin-Sook
    • Journal of the Korean Home Economics Association
    • /
    • v.44 no.2 s.216
    • /
    • pp.93-101
    • /
    • 2006
  • Children's wear needs extra safety features to avoid unexpected dangers. On the way to school, children are exposed to traffic very often. Especially in the early morning or late evening, or on dark cloudy days, they might be unrecognized by drivers without safety reflectors on their clothing as a means of raising visibility. Therefore, safety reflectors on clothing can protect children from traffic accidents. The research was carried out as follows. 1. Reflector manufacturers were interviewed regarding how Reflective and Reflexite reflect light back to the light source, what kind of safety reflector products are available, and how these materials are being used in the clothing industry. 2. Mothers of primary school children were interviewed to find out what they think about the effect of safety reflectors, the need for clothing using safety reflectors and the design preferences. 3. In order to apply safety reflectors efficiently, the position on the clothing of the greatest visibility from the light source must be determined. 4. Shirts, pants and jumpers for 8-year-old girls and boys were designed as a case study of applying safety reflectors to clothing. The designs were verified through wearing test.

Interference Analysis for Synthetic Aperture Radar Calibration Sites with Triangular Trihedral Corner Reflectors

  • Shin, Jae-Min;Ra, Sung-Woong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.253-259
    • /
    • 2016
  • The typical method for performing an absolute radiometric calibration of a Synthetic Aperture Radar (SAR) System is to analyze its response, without interference, to a target with a known Radar Cross Section (RCS). To minimize interference, an error-free calibration site for a Corner Reflector (CR) is required on a wide and flat plain or on an area without disturbance sources (such as ground objects). However, in reality, due to expense and lack of availability for long periods, it is difficult to identify such a site. An alternative solution is the use of a Triangular Trihedral Corner Reflector (TTCR) site, with a surrounding protection wall consisting of berms and a hollow. It is possible in this scenario, to create the minimum criteria for an effectively error-free site involving a conventional object-tip reflection applied to all beams. Sidelobe interference by the berm is considered to be the major disturbance factor. Total interference, including an object-tip reflection and a sidelobe interference, is analyzed experimentally with SAR images. The results provide a new guideline for the minimum criteria of TTCR site design that require, at least, the removal of all ground objects within the fifth sidelobe.

Design and Test of a Deployment Mechanism for the Composite Reflector Antenna (복합재료 반사판 안테나의 전개 메커니즘 설계 및 시험)

  • Chae, Seungho;Oh, Young-Eun;Lee, Soo-Yong;Roh, Jin-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.58-65
    • /
    • 2018
  • The dynamic characteristics of the deployable composite parabolic reflector with several panels were numerically and experimentally investigated. The deployment mechanism is designed to efficiently fit in a small volume. The parameters guiding the deployment are determined by considering; the number of panels, folding/twisting angles, and the driving forces of actuating devices. The panels are fabricated using carbon fiber reinforced plastics (CFRPs). The zero-gravity simulator is manufactured for the unfolding test. The deployment behaviors of the reflector are finally observed.

Design of a Compact Coaxial Waveguide Feed Horn for Dual Band (이중 대역 소형 동축 도파관 급전 혼 설계)

  • Yun, Sohyeun;Uhm, Manseok;Yom, Inbok
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.109-113
    • /
    • 2015
  • This paper presents the study results on a dual band feed horn for the focused reflector. A coaxial waveguide structure is attractive to avoid blockage from the feeder. The inner conductor as a hollow waveguide is designed to excite TE11 of a circular waveguide for high frequency. For low frequency, the design of the outer coaxial waveguide that propagates coaxial TE11 and prevents fundamental TEM is presented. The horn size for generation of these modes results in the degradation of performance. The return loss is improved by a capacitive iris and an inductive iris The enhanced pattern symmetry by dual mode is presented. The horn design in this paper are verified through the test.

Secondary Optical System Design for Omnidirectional LED Bulb (전방향으로 발광하는 LED Bulb를 위한 2차 광학계 설계)

  • Jang, Jae-Hyeon;Yun, Soon-Hwa;Maeng, Pil-Jae;Yu, Yong-Moon;Kim, Jong-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.26-33
    • /
    • 2015
  • Secondary optical system designed for LED bulb which emits light in all directions was simulated with Energy Star standards. Components of the optical system were LED light source, the cover of the LED bulb and reflector which is to confirm the diffuser plate and LightTools software was used to design the illumination optics. The main points of the secondary optical system design are the location of the LED light source, the shape of the LED bulb cover, the location of the reflection plate, and the scattering properties of the diffusing plate. Mechanism of the LED bulb is that the light emitted from the light source move on to the backward after reflected by the coated light cover from the inside and then the reflected light is scattered by the diffuser plate. The LED bulb was designed to satisfy the standard light distribution and color specifications of the Energy Star(IES LM-79-08).