• Title/Summary/Keyword: reflection of light

Search Result 578, Processing Time 0.032 seconds

Effects of Stray Light in Blue-light Blocking Lens on the Quality of Image (청색광 차단렌즈에서 미광이 상의 질에 미치는 영향)

  • Yuk, Ju Sung;Yang, Seok-Jun;Kim, Yong Gwon;Choi, Eun Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.612-618
    • /
    • 2016
  • The aim of this study is to investigate the effects of stray light originating from the blue-light blocking lens on the quality of the image. After designing the ideal spectacle lens, anti-reflection spectacle lens without internal reflection, anti-reflection spectacle lens with internal reflection, and blue-light blocking lens with internal reflection, the light intensity distribution and stray light distribution were derived. The designed spectacle lenses are meniscus lenses with a refractive power of 0.00 D, refractive index of 1.56, and a radius of 155.15 mm. The peaks of reflectance of the 4 types of blue-light blocking lenses are in the range between 430 nm and 440 nm, and their reflectances are 5%, 10%, 15%, and 20%, respectively. According to the analysis results, as the reflectance of the blue-light blocking lens increases, the light intensity in the center of the lens decreases and the intensity of the stray light in the center-periphery and periphery of the lens increases. This trend appeared to intensify with increasing reflectance of the blue-light blocking lenses. Because the increase in the reflectance of the blue-light blocking lens degrades the quality of the image by increasing the intensity of the stray light in the center-periphery and periphery of the lens, its reflectance needs to be adjusted by varying the blue-light blocking ratio and the luminous transmittance, in order to diminish the level of visual discomfort.

The Application of Machine Vision to IC Surface Inspection

  • Chung, Yi-Chan;Tsai, Chih-Hung;Lin, Yu-Tang
    • International Journal of Quality Innovation
    • /
    • v.4 no.2
    • /
    • pp.50-64
    • /
    • 2003
  • During IC inspection, which includes the two parts of Mark and Lead, the deviation of IC on the tape occurring in high speed movements usually generates light reflection effect, which in turn causes errors in IC recognition as measured by machine vision system. This research filters the light reflection effect by developing standard components, identifies the correct position of IC Lead, hence fixes the measurement errors or non-measurability caused by light reflection, avoids the resulting discontinued operation of measuring system, and improves the productivity.

THE REFLECTION EFFECT ON THE ECLIPSING BINARY BY THE WILSON AND DEVINNEY'S MODEL AND RUSSELL AND RUSSELL AND MERRILL'S MODEL (Wilson과 Devinney의 모델과 Russell과 Merrill의 모델에 의한 식쌍성의 반사 효과)

  • 최성희;강영운
    • Journal of Astronomy and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.30-40
    • /
    • 1992
  • The reflection effect on three types of eclipsing binaries has been analyzed based on the Wilson and Devinney's model and Russell and Merrill's model. The reflection effect was displayed on the theoretical light curves for the various conditions using the Wilson and Devinney's light curve program. Two models were compared after the rectifing the theoretical light curves including the reflection effect with the Russell and Merrill's method. The result shows that two models have an agreement on the reflection effect just in cases of the small difference in temperature adn albedo between two stars in the system.

  • PDF

A Basic Study on the Reduction of Illuminated Reflection for improving the Safety of Self-driving at Night (야간 자율주행 안전성 향상을 위한 조명반사광 감소에 관한 기초연구)

  • Park, Chang min
    • Journal of Platform Technology
    • /
    • v.10 no.3
    • /
    • pp.60-68
    • /
    • 2022
  • As AI-technology develops, interest in the safety of autonomous driving is increasing. Recently, autonomous vehicles have been increasing, but efforts to solve side effects have been sluggish. In particular, night autonomous vehicles have more problems. This is because the probability of accidents is higher in the night driving environment than in the day environment. There are more factors to consider for self-driving at night. Among these factors, reflection of light or reflected light of lighting may be a fundamental cause of night accidents. Therefore, this study proposes method to reduce accidents and improve safety by reducing reflected light generated by the headlights of opposite vehicles or various surrounding light that appear as an important problem in night autonomous vehicles. Therefore, first, in an image obtained by a sensor of a night autonomous vehicle, illumination reflected light is extracted using reflected light characteristic information, and a color of each pixel using a reflection coefficient is found to reduce a special area generated by geometric characteristics. In addition, we find a new area using only the brightness component of the specular area, define it as Illuminated Reflection Light (IRL), and finally present a method to reduce it. Although the illumination reflection light could not be completely reduce, generally satisfactory results could be obtained. Therefore, it is believed that the proposed study can reduce casualties by solving the problems of night autonomous driving and improving safety.

Implementation of Reflection Removal Algorithm on Mobile Device (모바일 장치에서 반사 잔상 제거 알고리즘 구현)

  • Lee, YuKyong;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.108-112
    • /
    • 2021
  • Undesired reflection removal from an image captured through glass window is widely needed with the prevalence of camera. In this paper, we present and implement a reflection removal algorithm, which is specially designed for smart devices. Our implementation requires smart phone application to take two input pictures of the same target, one with flash light on and another with flash light off. Then, we find a flash spot in the picture, match the features to align the input pictures, transform the color space, and finally combine the pictures. As the result, we get a resulting image with removed reflection, achieving the visually pleasant.

A Study on Improvement of the Light Emitting Efficiency on Flip Chip LED with Patterned Sapphire Substrate by the Optical Simulation (광학 시뮬레이션을 이용한 Patterned Sapphire Substrate에 따른 Flip Chip LED의 광 추출 효율 변화에 대한 연구)

  • Park, Hyun Jung;Lee, Dong Kyu;Kwak, Joon Seop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.676-681
    • /
    • 2015
  • Recently many studies being carried out to increase the light efficiency of LED. The external quantum efficiency of LED, generally the light efficiency, is determined by the internal quantum efficiency and the light extraction efficiency. The internal quantum efficiency of LED was already reached to more than 90%, but the light extraction efficiency is still insufficient compared with the internal quantum efficiency because the total internal reflection is generated in the interface between the LED chip and air. Thus, we studied about flip chip LED with PSS and performed the optical simulation which find more optimized PSS for flip chip LED to increase the light extraction efficiency. Decreasing of the total internal reflection and effect of diffused reflection according to PSS improved the light extraction efficiency. To get more higher the efficiency, we simulated flip chip with PSS that the parameters are arrangement, edge spacing, radius, height and shape of PSS.

Development of the Light Guide Lamp for Lighting Image Enhancement Using Retro Reflection Principle (재귀반사 원리를 이용한 점등이미지 향상 LIGHT GUIDE 개발)

  • Kim, Hyeongseon;Choi, Sungwuk;Jin, Gunsoo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.4
    • /
    • pp.16-21
    • /
    • 2019
  • In recent years, most automobile manufacturers have been using slim light source images to imprint their own brand image and identity. A light guide type lamp is widely used for making these kinds of a slim light source image. A light guide lamp means using a light emitting diode light source at one end of a long cylindrical pipe. The light from the light emitting diode source moves through the pipe by total reflection principle. Moving light is sent forward by various optic structures which is applied in the cylindrical pipe. However, the light guide lamp has a problem that the image of the light differs depending on the viewing direction, and in some cases there is dark section. It means light guide has low quality about lighting image. In this paper, trying to improve the fundamental problems of the light guide mentioned above by using various triz methods. Through functional modeling, estimating the factors affecting the light in the light guide lamp and make various ideas to improve the lighting image using the chain effect cause analysis, function oriented search scientific database techniques. Using these kinds of various TRIZ methods, finally find solutions that can improve the brightness and lighting uniformity of the light guide lamp. The ideas obtained in this paper were applied to actual vehicle development, and several patents achievements were obtained. In conclusion, it is proved that TRIZ method is useful for making ideas in actual automobile industrial field and is also a useful method for acquiring patent.

Indirect estimation of the reflection distribution function of the scattering dot patterns on a light guide plate for edge-lit LED backlight applications

  • Jeong, Su-Seong;Jeong, Yong-Woong;Park, Min-Woo;Kim, Su-Jin;Kim, Jae-Hyun;Ko, Jae-Hyeon
    • Journal of Information Display
    • /
    • v.12 no.4
    • /
    • pp.167-171
    • /
    • 2011
  • The angular distribution of the luminance on each optical component of 40-inch light-emitting diode backlight was measured and studied, using the optical-simulation method. Several scattering functions were investigated as the reflection distribution function of the scattering dots printed on the bottom surface of the light guide plate (LGP). It was found that both the diffuse Lambertian and near-specular Gaussian scattering functions were necessary for the successful reproduction of the experimental angular distribution of the luminance. The optimization of the scattering parameters included in these scattering functions led to almost the same luminance distribution as that obtained from the experiment. This approach may be an effective way of indirectly estimating the reflection distribution function of the scattering dots of the LGP, which cannot be made accessible through any other experimental method.

Secondary Optics Design of Dissymmetrical Light Distribution for 100 W LED Safety Luminaires (100 W급 LED 보안 등기구용 비대칭 배광의 2차 렌즈 설계)

  • Shin, Ik-Tae;Yang, Jong-Kyung;Lee, Dong-Jin;Par, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.471-476
    • /
    • 2010
  • This paper has studied dissymmetrical light distribution design using the secondary optics in the simulation. fundamental Lambertian radiation distribution based on LED has been cut off by the secondary optics, and the first surface slope of lens and second surface slope of total reflection area have been calculated through formula. PMMA (the index of refraction: 1.49361) which is material of lens has been selected. critical angle($42.02993^{\circ}$) between Air and PMMA has been calulated by snell's law, and total reflection angle slope has been selected about $16.67^{\circ}$ to occur the total reflection. when the first surface slope and the second surface slope has been set up, Rays of all total reflection area have generated the total reflection. finally, designed LED Module has been estimated by Korean Industrial Standards for LED safety street lighting. dissymmetrical light distribution have been analyzed with reached effect of road illuminance, and average road illuminance which are each 70.6 lx, 40.35 lx, and 25.88 lx have been satisfied with Korean Industrial Standards for LED safety street lighting.