• 제목/요약/키워드: reflectance spectra

검색결과 271건 처리시간 0.024초

Nondestructive Determination of Humic Acids in Soils by Near Infrared Reflectance Spectroscopy

  • Seo, Sang-Hyun;Park, Woo-Churl;Cho, Rae-Kwang;Xiaori Han
    • Near Infrared Analysis
    • /
    • 제1권1호
    • /
    • pp.31-35
    • /
    • 2000
  • Near-infrared reflectance spectroscopy(NIRS) was used to determine the humic acids in soil samples from the fields of different crops and land-use over Youngnam and Honam regions in Korea. An InfraAlyzer 500 scanning spectrophotometer was obtained near infrared relectance spectra of soil at 2-nm intervals from 1100 to 2500nm. Multiple linear regression(MLR) or partial least square regression (PLSR) was used to evaluate a NIRS method for the rapid and nondestructive determination of humic acid, fulvic acid and its total contents in soils. The raw spectral data(log 1/R) can be used for estimating humic acid, fulvic acid and its total contents in soil by MLR procedure between the content of a given constituent and the spectral response of several bands. In which the predicted results for fulvic acid is the best in the constituents. The new spectral data are converted from the raw spectra by PLSR method such as the first derivative of each spectrum can also be used to predict humic acid and fulvic acid of the soil samples. A low SEC, SEP and a high coefficient of correlation in the calibration and validation stages enable selection of the best manipulation. But a simple calibration and prediction method for determining humic acid and fulvic acid should be selected under similar accuracy and precision of prediction. NIRS technique may be an effective method for rapid and nondestructive determination for humic acid, fulvic acid and its total contents in soils.

Current progress in development of full 3D earth model for integrated ray tracing simulation of planetary disk averaged spectra

  • Ryu, Dong-Ok;Jung, Kil-Jae;Oh, Eun-Song;Ahn, Ki-Beom;Jeong, Soo-Min;Jeong, Yu-Kyeong;Yu, Jin-Hee;Lee, Jae-Min;Hong, Eric(JS);Kim, Sug-Whan
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2008년도 한국우주과학회보 제17권2호
    • /
    • pp.28.1-28.1
    • /
    • 2008
  • Detection of spectral bio-signatures from extra terrestrial planets has received an increasing attention from the astronomy and space science communities in recent years. In an attempt to better-understand disk averaged spectra of the only know terrestrial planet i.e. Earth, we are constructing a scale-able 3D earth model with surface reflectance and scattering properties. The USGS coastal line data were used to form coastal line segments and they were then stitched to generate continuous coastal lines to represent major continents and large islands. As the first stage of model verification, wavelength dependent ocean and land reflectance data and scattering characteristics were defined over the land and sea surfaces respectively. We then performed ray tracing based imaging and radiometric transfer simulations using a hypothetical optical payload receiving the reflected and scattered sun lights from the earth. The model concept, computational details, the simulation results are discussed as well as the future development plan.

  • PDF

사과 착색도의 비파괴측정을 위한 근적외분광분석법의 응용 (Application of Near Infrared Spectroscopy for Nondestructive Evaluation of Color Degree of Apple Fruit)

  • 손미령;조래광
    • 한국식품저장유통학회지
    • /
    • 제7권2호
    • /
    • pp.155-159
    • /
    • 2000
  • Apple fruit grading is largely dependant on skin color degree. This work reports about the possibility of nondestructive assessment of apple fruit color using infrared(NIR) reflectance spectroscopy. NIR spectra of apple fruit were collected in wavelength range of 1100~2500nm using an InfraAlyzer 500C(Bran+Luebbe). Calibration as calculated by the standard analysis procedures MLR(multiple linear regression) and stepwise, was performed by allowing the IDAS software to select the best regression equations using raw spectra of sample. Color degree of apple skin was expressed as 2 factors, anthocyanin content by purification and a-value by colorimeter. A total of 90 fruits was used for the calibration set(54) and prediction set(36). For determining a-value, the calibration model composed 6 wavelengths(2076, 2120, 2276, 2488, 2072 and 1492nm) provided the highest accuracy : correlation coefficient is 0.913 and standard error of prediction is 4.94. But, the accuracy of prediction result for anthocyanin content determining was rather low(R of 0.761).

  • PDF

Number of sampling leaves for reflectance measurement of Chinese cabbage and kale

  • Chung, Sun-Ok;Ngo, Viet-Duc;Kabir, Md. Shaha Nur;Hong, Soon-Jung;Park, Sang-Un;Kim, Sun-Ju;Park, Jong-Tae
    • 농업과학연구
    • /
    • 제41권3호
    • /
    • pp.169-175
    • /
    • 2014
  • Objective of this study was to investigate effects of pre-processing method and number of sampling leaves on stability of the reflectance measurement for Chinese cabbage and kale leaves. Chinese cabbage and kale were transplanted and cultivated in a plant factory. Leaf samples of the kale and cabbage were collected at 4 weeks after transplanting of the seedlings. Spectra data were collected with an UV/VIS/NIR spectrometer in the wavelength region from 190 to 1130 nm. All leaves (mature and young leaves) were measured on 9 and 12 points in the blade part in the upper area for kale and cabbage leaves, respectively. To reduce the spectral noise, the raw spectral data were preprocessed by different methods: i) moving average, ii) Savitzky-Golay filter, iii) local regression using weighted linear least squares and a $1^{st}$ degree polynomial model (lowess), iv) local regression using weighted linear least squares and a $2^{nd}$ degree polynomial model (loess), v) a robust version of 'lowess', vi) a robust version of 'loess', with 7, 11, 15 smoothing points. Effects of number of sampling leaves were investigated by reflectance difference (RD) and cross-correlation (CC) methods. Results indicated that the contribution of the spectral data collected at 4 sampling leaves were good for both of the crops for reflectance measurement that does not change stability of measurement much. Furthermore, moving average method with 11 smoothing points was believed to provide reliable pre-processed data for further analysis.

CHALLENGING APPLICATIONS FOR FT-NIR SPECTROSCOPY

  • Goode, Jon G.;Londhe, Sameer;Dejesus, Steve;Wang, Qian
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.4112-4112
    • /
    • 2001
  • The feasibility of NIR spectroscopy as a quick and nondestructive method for quality control of uniformity of coating thickness of pharmaceutical tablets was investigated. Near infrared spectra of a set of pharmaceutical tablets with varying coating thickness were measured with a diffuse reflectance fiber optic probe connected to a Broker IFS 28/N FT-NIR spectrometer. The challenging issues encountered in this study included: 1. The similarity of the formulation of the core and coating materials, 2. The lack of sufficient calibration samples and 3. The non-linear relationship between the NIR spectral intensity and coating: thickness. A peak at 7184 $cm^{-1}$ was identified that differed for the coating material and the core material when M spectra were collected at 2 $cm^{-1}$ resolution (0.4 nm at 7184 $cm^{-1}$). The study showed that the coating thickness can be analyzed by polynomial fitting of the peak area of the selected peak, while least squares calibration of the same data failed due to the lack of availability of sufficient calibration samples. Samples of coal powder and solid pieces of coal were analyzed by FT-NIR diffuse reflectance spectroscopy with the goal of predicting their ash content, percentage of volatile components, and energy content. The measurements were performed on a Broker Vector 22N spectrometer with a fiber optic probe. A partial least squares model was constructed for each of the parameters of interest for solid and powdered sample forms separately. Calibration models varied in size from 4 to 10 PLS ranks. Correlation coefficients for these models ranged from 86.6 to 95.0%, with root-mean-square errors of cross validation comparable to the corresponding reference measurement methods. The use of FT-NIR diffuse reflectance measurement techniques was found to be a significant improvement over existing measurement methodologies in terms of speed and ease of use, while maintaining the desired accuracy for all parameters and sample forms.(Figure Omitted).

  • PDF

Predicting Organic Matter content in Korean Soils Using Regression rules on Visible-Near Infrared Diffuse Reflectance Spectra

  • Chun, Hyen-Chung;Hong, Suk-Young;Song, Kwan-Cheol;Kim, Yi-Hyun;Hyun, Byung-Keun;Minasny, Budiman
    • 한국토양비료학회지
    • /
    • 제45권4호
    • /
    • pp.497-502
    • /
    • 2012
  • This study investigates the prediction of soil OM on Korean soils using the Visible-Near Infrared (Vis-NIR) spectroscopy. The ASD Field Spec Pro was used to acquire the reflectance of soil samples to visible to near-infrared radiation (350 to 2500 nm). A total of 503 soil samples from 61 Korean soil series were scanned using the instrument and OM was measured using the Walkley and Black method. For data analysis, the spectra were resampled from 500-2450 nm with 4 nm spacing and converted to the $1^{st}$ derivative of absorbance (log (1/R)). Partial least squares regression (PLSR) and regression rules model (Cubist) were applied to predict soil OM. Regression rules model estimates the target value by building conditional rules, and each rule contains a linear expression predicting OM from selected absorbance values. The regression rules model was shown to give a better prediction compared to PLSR. Although the prediction for Andisols had a larger error, soil order was not found to be useful in stratifying the prediction model. The stratification used by Cubist was mainly based on absorbance at wavelengths of 850 and 2320 nm, which corresponds to the organic absorption bands. These results showed that there could be more information on soil properties useful to classify or group OM data from Korean soils. In conclusion, this study shows it is possible to develop good prediction model of OM from Korean soils and provide data to reexamine the existing prediction models for more accurate prediction.

초분광 반사광 영상을 이용한 무(Raphanus sativus L) 종자의 발아와 불발아 비파괴 판별 (Nondestructive Classification of Viable and Non-viable Radish (Raphanus sativus L) Seeds using Hyperspectral Reflectance Imaging)

  • 안치국;모창연;강점순;조병관
    • Journal of Biosystems Engineering
    • /
    • 제37권6호
    • /
    • pp.411-419
    • /
    • 2012
  • Purpose: Nondestructive evaluation of seed viability is a highly demanded technique in the seed industry. In this study, hyperspectral imaging system was used for discrimination of viable and non-viable radish seeds. Method: The spectral data with the range from 400 to 1000 nm measured by hyperspectral reflectance imaging system were used. A calibration and a test models were developed by partial least square discrimination analysis (PLS-DA) for classification of viable and non-viable radish seeds. Either each data set of visible (400~750 nm) and NIR (750~1000 nm) spectra and the spectra of the combined spectral ranges were used for developing models. Results: The discrimination accuracy of calibration was 84% for visible range and 76.3% for NIR range. The discrimination accuracy of test was 84.2% for visible range and 75.8% for NIR range. The discrimination accuracies of calibration and test with full range were 92.2% and 92.5%, respectively. The resultant images based on the optimal PLS-DA model showed high performance for the discrimination of the nonviable seeds from the viable seeds with the accuracy of 95%. Conclusions: The results showed that hyperspectral reflectance imaging has good potential for discriminating nonviable radish seeds from massive amounts of viable seeds.

분광분석법을 이용한 단립 쌀의 함수율 및 단백질 함량 예측모델 개발 (Development of Prediction Model for Moisture and Protein Content of Single Kernel Rice using Spectroscopy)

  • 김재민;최창현;민봉기;김종훈
    • Journal of Biosystems Engineering
    • /
    • 제23권1호
    • /
    • pp.49-56
    • /
    • 1998
  • The objectives of this study were to develop models to predict the contents of moisture and protein of single kernel of brown rice based on visible/NIR (near-infrared) spectroscopic technique. The reflectance spectra of rice were obtained in the range of the wavelength 400 to 2,500 nm with 2 nm intervals. Multiple linear regression(MLR) and partial least squares (PLS) were used to develop the models. The MLR model using the first derivative spectra(10 nm of gap) with Standard Normal Variate and Detrending (SNV and Drt.) preprocessing showed the best results to predict moisture content of the sin린e kernel brown rice. To predict the protein content of a single kernel of brown ricer the PLS model used the raw spectra with multiplicative scatter correction(MSC) preprocessing over the wavelength of 1,100~1,500 nm.

  • PDF

ATR-FTIR Analysis of Adhesives Jointing Buddhist Scripture Scrolls in Medieval Korea(Goryeo Dynasty)

  • Oh, Joon Suk
    • 보존과학회지
    • /
    • 제35권1호
    • /
    • pp.11-18
    • /
    • 2019
  • The adhesives joining Buddhist scripture scrolls from medieval Korea(Goryeo Dynasty, A.D. 918~1392) are different from wheat starch adhesive. The composition of the adhesive was analyzed using Attenuated Total Reflectance-Fourier Transform Infrared(ATR-FTIR) spectroscopy. In the adhesive used to join Buddhist scripture scrolls, peaks attributed to amide I and amide II of the protein and carbohydrate were detected in the ATR-FTIR spectra, and no carbonyl peak($1745cm^{-1}$) for oil was detected in the 2nd derivative ATR-FTIR spectra. The ATR-FTIR spectra almost coincided with those of defatted soybean powder adhesive. Hence, the adhesives joining Buddhist scripture scrolls were inferred to be soybean adhesive prepared from a defatted soybean cake.

Low-energy interband transition effects on extended Drude model analysis of optical data of correlated electron system

  • Hwang, Jungseek
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권3호
    • /
    • pp.6-12
    • /
    • 2019
  • Extended Drude model has been used to obtain information of correlations from measured optical spectra of strongly correlated electron systems. The optical self-energy can be defined by the extended Drude model formalism. One can extract the optical self-energy and the electron-boson spectral density function from measured reflectance spectra using a well-developed usual process, which is consistent with several steps including the extended Drude model and generalized Allen's formulas. Here we used a reverse process of the usual process to investigate the extended Drude analysis when an additional low-energy interband transition is included. We considered two typical electron-boson spectral density model functions for two different (normal and d-wave superconducting) material states. Our results show that the low-energy interband transition might give significant effects on the electron-boson spectral density function obtained using the usual process. However, we expect that the low-energy interband transition can be removed from measured spectra in a proper way if the transition is well-defined or well-known.