• Title/Summary/Keyword: reflectance

Search Result 1,906, Processing Time 0.031 seconds

Relationship Between Color Characteristic and Reflectance Index by Ground-based Remote Sensor for Tobacco Leaves (연초 엽의 색 특성과 원격탐사 반사율지표의 상호관계)

  • Hong, Soon-Dal;Kang, Seong-Soo;Jeon, Sang-Ho;Jeong, Hyun-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.274-279
    • /
    • 2009
  • To determine the critical level for optimum maturity of flue-cured tobacco leaves (KF118) at the stalk position from cutter to tips, the reflectance index using ground-based remote sensors and chlorophyll meter were investigated. The sensors estimated were Crop $Circle^{TM}$ (Holland Scientific), Green $Seeker^{TM}$ (Ntech Industries), Spectroradiometer (LICOR, LI-1800), Chlorophyll meter (SPAD502, Minolta), and Field $Scout^{TM}$ Chlorophyll meter (CM-1000, Spectrum). The L, a, b values and greenness for flue-cured leaf were measured and estimated for correlation with sensor's measurement of harvested leaf. On a reflectance curve of 340nm~1100 nm, the reflectance peaks on 550nm and 675 nm for the harvested leaf were lowered as change from light green to darker green. Darker green leaf harvested produced darker flue-cured leaf. The reflectance at 675 nm for flue-cured leaf decreased as greenness increased in the harvested leaf. This result means that the red edge band of 675 nm wavelength is related to the absorbance of chlorophyll for photosynthesis. The greenness of flue-cured leaf showed significantly positive correlation with the entire reflectance indexes for harvested leaf while the L value by colorimeter showed negative correlation with greenness of cured leaf. The critical level for optimum maturity of harvested leaf were less than 22, 135, and 0.43 for SPAD reading, CM-1000 reading, and gNDVI by Crop $Circle^{TM}$, respectively. Consequently, ground-based remote sensing providing a non-destructive real-time assessment of plant greenness could be a useful tool in the selection of optimum maturity of flue-cured tobacco leaves in relation to high quality of flue-cured tobacco.

The Development of Water Quality Monitoring System and its Application Using Satellite Image Data

  • Jang, Dong-Ho;Jo, Gi-Ho
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.376-381
    • /
    • 1998
  • In this study, we was measured the radiance reflectance by using multi-spectral image of low resolution camera(LRC) which will be loaded in the multi-purpose satellite(KOMPSAT) to use the data in analyzing water pollution. Also we investigated the possibility of extraction of water quality factors in rivers and water body by using high resolution remote sensing data such as Airborne MSS. Especially, we tried to extract the environmental factors related with eutrophication, and also tried to develop the process technique and the radiance feature of reflectance related with eutrophication. The results were summarized as follows: First, the spectrum of sun's rays which reaches the surface of the earth was consistent with visible rays bands of 0.4${\mu}{\textrm}{m}$~0.7${\mu}{\textrm}{m}$ and about 50% of total quantity of radiation were there. And at around 0.5${\mu}{\textrm}{m}$ of green spectral band in visible rays bands, the spectrum was highest. Second, as a result of the radiance reflectance Chlorophyll-a represented high spectral reflectance mainly around 0.52${\mu}{\textrm}{m}$ of green spectral band, and suspended sediments and turbidity represented high spectral reflectance at 0.8${\mu}{\textrm}{m}$ and at 0.57${\mu}{\textrm}{m}$ each. Third, as a result of the water quality analysis by using Airborne MSS, Chlorophyll-a could have a distribution chart when carried out ratio of B3 and BS to B7. And Band 7 was useful for making the distribution chart of suspended sediments. And when we carried out PCA, suspended sediments and turbidity had distributions at PC 1 , PC 4 each similarly to ground truth data. Above results can be changed according to the change of season and time. Therefore, in order to analyze more exactly the environmental factors of water quality by using LRC data, we need to investigate constantly the ground truth data and the radiance feature of reflectance of water body. Afterward in this study, we will constantly analyze the radiance feature of the surface of water in water body by measuring the on-the-spot radiance reflectance and using low resolution satellite image(SeaWiFs). Besides, we will gather the data of water quality analysis in water body and analyze the pattern of water pollution.

  • PDF

Radiometric Cross Validation of KOMPSAT-3 AEISS (다목적실용위성 3호 AEISS센서의 방사 특성 교차 검증)

  • Shin, Dong-yoon;Choi, Chul-uong;Lee, Sun-gu;Ahn, Ho-yong
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.529-538
    • /
    • 2016
  • This study, multispectral and hyperspectral sensors were utilized to use radiometric cross validation for the purpose of radiometric quality evaluation of a 'KOMPSAT-3'. Images of EO-1 Hyperion and Landsat-8 OLI sensors taken in PICS site were used. 2 sections that have 2 different types of ground coverage respectively were selected as the site of cross validation based on aerial hyperspectral sensor and TOA Reflectance. As a result of comparison between the TOA reflectance figures of KOMPSAT-3, EO-1 Hyperion and CASI-1500, the difference was roughly 4%. It is considered that it satisfies the radiological quality standard when the difference of figure of reflectance in a comparison to the other satellites is found within 5%. The difference in Blue, Green, Red band was approximately 3% as a comparison result of TOA reflectance. However the figure was relatively low in NIR band in a comparison to Landsat-8. It is thought that the relatively low reflectance is because there is a difference of band passes in NIR band of 2 sensors and in a case of KOMPSAT-3 sensor, a section of 940nm, which shows the strong absorption through water vapor, is included in band pass resulting in comparatively low reflectance. To overcome these conditions, more detailed analysis with the application of rescale method as Spectral Bandwidth Adjustment Factor (SBAF) is required.

Evaluation of Biomass and Nitrogen Nutrition of Tobacco under Sand Culture by Reflectance Indices of Ground-based Remote Sensors (지상원격측정 센서의 반사율 지표를 활용한 사경재배 연초의 생체량 및 질소영양 평가)

  • Kang, Seong-Soo;Jeong, Hyun-Cheol;Jeon, Sang-Ho;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.70-78
    • /
    • 2009
  • Remote sensing technique in agriculture can be used to identify chlorophyll content, biomass, and yield caused from N stress level. This study was conducted to evaluate biomass, N stress levels, and yield of tobacco (Nicotiana tabacum L.) under sand culture in a plastic film house using ground-based remote sensors. Nitrogen rates applied were 40, 60, 80, 100, 120, and 140 percent of N concentration in the Hoagland's nutrient solution. Sensor readings for reflectance indices were taken at 30, 35, 40, 45, 50 and 60 days after transplanting(DAT). Reflectance indices measured at 40th DAT were highly correlated with dry weight(DW) of tobacco leaves and N uptake by leaves. Especially, green normalized difference vegetation index(gNDVI) from spectroradiometer and aNDVI from Crop Circle passive sensor were able to explain 85% and 84% of DW variability and 85% and 92% of N uptake variability, respectively. All the reflectance indices measured at each sampling date during the growing season were significantly correlated with tobacco yield. Especially the gNDVI derived from spectroradiometer readings at the 40th DAT explained 72% of yield variability. N rates of tobacco were distinguished by sufficiency index calculated using the ratio of reflectance indices of stress to optimum plot of N treatment. Consequently results indicate that the reflectance indices by ground-based remote sensor can be used to predict tobacco yield and recommend the optimum application rate of N fertilizer for top dressing of tobacco.

Development of Remote Sensing Reflectance and Water Leaving Radiance Models for Ocean Color Remote Sensing Technique (해색 원격탐사를 위한 원격반사도 및 수출광 모델의 개발)

  • 안유환
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.3
    • /
    • pp.243-260
    • /
    • 2000
  • Ocean remote sensing reflectance of just above water level was modeled using inherent optical properties of seawater contents, total absorption (a) and backscattering(bb) coefficients ($R_{rs}$=0.046 $b_b$/(a+$b_b$). This modeling was based on the specific absorption and backscattering coefficients of 5 optically active seawater components; phytoplankton pigments, non-chlorophyllous suspended particles, dissolved organic matters, heterotrophic microorganisms, and the other unknown particle components. Simulated remote sensing reflectance($R_{rs}$) and water leaving radiance(Lw) spectra were well agreed with in-situ measurements obtained using a bi-directional fields remote spectrometer in coastal waters and open ocean. $R_{rs}$ values in SeaWiFS bands from the model were analyzed to develop 2-band ratio ocean color chlorophyll with those observed insitu. Also, chlorophyll algorithm based on remote reflectance developed in this study fell in those obtained by a SeaBAM working group. The model algorithms were examined and compared with those observed insitu. Also, chlorophyll algorithm based on remote reflectance developed in this study fell in those obtained by a SeaBAM working group. The remote reflectance model will be very helpful to understand the variation of water leaving radiances caused by the various components in the seawater, and to develop new ocean color algorithm for CASE-II water using neural network method or other analytical method, and in the model of fine atmospheric signal correction.

An Implementation of the OTB Extension to Produce RapidEye Surface Reflectance and Its Accuracy Validation Experiment (RapidEye 영상정보의 지표반사도 생성을 위한 OTB Extension 개발과 정확도 검증 실험)

  • Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.485-496
    • /
    • 2022
  • This study is for the software implementation to generate atmospheric and surface reflectance products from RapidEye satellite imagery. The software is an extension based on Orfeo Toolbox (OTB) and an open-source remote sensing software including calibration modules which use an absolute atmospheric correction algorithm. In order to verify the performance of the program, the accuracy of the product was validated by a test image on the Radiometric Calibration Network (RadCalNet) site. In addition, the accuracy of the surface reflectance product generated from the KOMPSAT-3A image, the surface reflectance of Landsat Analysis Ready Data (ARD) of the same site, and near acquisition date were compared with RapidEye-based one. At the same time, a comparative study was carried out with the processing results using QUick Atmospheric Correction (QUAC) and Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) tool supported by a commercial tool for the same image. Similar to the KOMPSAT-3A-based surface reflectance product, the results obtained from RapidEye Extension showed accuracy of agreement level within 5%, compared with RadCalNet data. They also showed better accuracy in all band images than the results using QUAC or FLAASH tool. As the importance of the Red-Edge band in agriculture, forests, and the environment applications is being emphasized, it is expected that the utilization of the surface reflectance products of RapidEye images produced using this program will also increase.

Study on Algorithm of Micro Surface Roughness Measurement Using Laser Reflectance Light (레이저 반사광을 이용한 미세 표면 거칠기 측정 알고리즘에 관한 연구)

  • Choi, Gyu-Jong;Kim, Hwa-Young;Ahn, Jung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.347-353
    • /
    • 2008
  • Reflected light can be decomposed into specular and diffuse components according to the light reflectance theory and experiments. The specular component appears in smooth surfaces mainly, while the diffuse one is visible in rough surfaces mostly. Therefore, each component can be used in forming their correlations to a surface roughness. However, they cannot represent the whole surface roughness seamlessly, because each formulation is merely validated in their available surface roughness regions. To solve this problem, new approaches to properly blend two light components in all regions are proposed in this paper. First is the weighting function method that a blending zone and rate can be flexibly adjusted, and second is the neural network method based on the learning from the measurement data. Simulations based on the light reflectance theory were conducted to examine its performance, and then experiments conducted to prove the enhancement of the measurement accuracy and reliability through the whole surface roughness regions.

Analysis on Food Waste Compost by Near Infrared Reflectance Spectroscopy(NIRS) (Near Infrared Reflectance Spectroscopy(NIRS)에 의한 음식물 쓰레기 퇴비 분석에 관한 연구)

  • Lee Hyo-Won;Kil Dong-Yong
    • Korean Journal of Organic Agriculture
    • /
    • v.13 no.3
    • /
    • pp.281-289
    • /
    • 2005
  • In order to find out an alternative way of analysis of food waste compost, the Near Infrared Reflectance Spectroscopy(NIRS) was used for the compost assessment because the technics has been known as non-detructive, cost-effective and rapid method. One hundred thirty six compost samples were collected from Incheon food waste compost factory at Namdong Indurial Complex. The samples were analyzed for nitrogen, organic matter (OM), ash, P, and K using Kjedahl, ignition method, and acid extraction with spectrophotometer, respectively. The samples were scanned using FOSS NIRSystem of Model 6500 scanning mono-chromator with wavelength from $400\~2,400nm$ at 2nm interval. Modified partial Least Squares(MPLS) was applied to develop the most reliable calibration model between NIR spectra and sample components such as nitrogen, ash, OM, P, and K. The regression was validated using validation set(n=30). Multiple correlation coefficient($R^2$) and standard error of prediction(SEP) for nitrogen, ash, organic matter, OM/N ratio, P and K were 0.87, 0.06, 0.72, 1.07, 0.68, 1.05, 0.89, 0.31, 0.77, 0.06, and 0.64, 0.07, respectively. The results of this experiment indicates that NIRS is reliable analytical method to assess some components of feed waste compost, also suggests that feasibility of NIRS can be Justified in case of various sample collection around the year.

  • PDF

Development of non-destructive measurement method for discriminating disease-infected seed potato using visible/near-Infrared reflectance technique (광 반사방식을 이용한 감염 씨감자 비파괴 선별 기술 개발)

  • Kim, Dae-Yong;Cho, Byoung-Kwan;Lee, Youn-Su
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.1
    • /
    • pp.117-123
    • /
    • 2012
  • Pathogenic fungi and bacteria such as Pectobacterium atrosepticum, Clavibacter michiganensis subsp. sepedonicus, Verticillium albo-atrum, and Rhizoctonia solani were the major microorganism which causes diseases in seed potato during postharvest process. Current detection method for disease-infected seed potato relies on human inspection, which is subjective, inaccurate and labor-intensive method. In this study, a reflectance spectroscopy was used to classify sound and disease-infected seed potatoes with the spectral range from 400 to 1100 nm. Partial least square discriminant analysis (PLS-DA) with various preprocessing methods was used to investigate the feasibility of classification between sound and disease-infected seed potatoes. The classification accuracy was above 97 % for discriminating disease seed potatoes from sound ones. The results show that Vis/NIR reflectance method has good potential for non-destructive sorting for disease-infected seed potatoes.

비정질 실리콘 태양전지 후면 반사막 적용을 위한 저온 증착된 AZO 박막 특성에 관한 연구

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.315-315
    • /
    • 2016
  • The hydrogenated amorphous silicon (a-Si:H) thin film solar cells using n/Al or n/Ag/Al back reflector have low short circuit current (Jsc) due to high absorption coefficients of Al or work function difference between n-layer and the metal. In this article, we utilized aluminum doped zinc oxide (AZO) to raise the internal reflectance for the improvement of short current density (Jsc) in a-Si:H thin film solar cells. It was found that there was a slight increase in the reflectance in the long wavelength range at the process temperature of 125oC due to improved crystalline quality of the AZO back reflector. The optical band gap (Eg) and work function were affected by the temperature and so did the internal reflectance. The increased internal reflectance within the solar cell resulted in Jsc of 14.94 mA/cm2 and the efficiency of 8.84%. Jsc for the cell without back reflector was 12.29 mA/cm2.

  • PDF