• Title/Summary/Keyword: refined plate theory

Search Result 126, Processing Time 0.022 seconds

A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates

  • Bourada, Fouad;Amara, Khaled;Bousahla, Abdelmoumen A.;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.661-675
    • /
    • 2018
  • In this paper, buckling analysis of hybrid functionally graded plates using a novel four variable refined plate theory is presented. In this theory the distribution of transverse shear deformation is parabolic across the thickness of the plate by satisfying the surface conditions. Therefore, it is unnecessary to use a shear correction factor. The variations of properties of the plate through the thickness are according to a symmetric sigmoid law (symmetric S-FGM). The principle virtual works is used herein to extract equilibrium equations. The analytical solution is determined using the Navier method for a simply supported rectangular plate subjected to axial forces. The precision of this theory is verified by comparing it with the various solutions available in the literature.

Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory

  • Bourada, Fouad;Amara, Khaled;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1287-1306
    • /
    • 2016
  • The current research presents a buckling analysis of isotropic and orthotropic plates by proposing a new four variable refined plate theory. Contrary to the existing higher order shear deformation theories (HSDT) and the first shear deformation theory (FSDT), the proposed model uses a new displacement field which incorporates undetermined integral terms and involves only four variables. The governing equations for buckling analysis are deduced by utilizing the principle of virtual works. The analytical solution of a simply supported rectangular plate under the axial loading has been determined via the Navier method. Numerical investigations are performed by using the proposed model and the obtained results are compared with CPT solutions, FSDT solutions, and the existing exact solutions in the literature. It can be concluded that the developed four variable refined plate theory, which does not use shear correction coefficient, is not only simple but also comparable to the FSDT.

Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory

  • Beldjelili, Youcef;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.755-786
    • /
    • 2016
  • The hygro-thermo-mechanical bending behavior of sigmoid functionally graded material (S-FGM) plate resting on variable two-parameter elastic foundations is discussed using a four-variable refined plate theory. The material characteristics are distributed within the thickness direction according to the two power law variation in terms of volume fractions of the constituents of the material. By employing a four variable refined plate model, both a trigonometric distribution of the transverse shear strains within the thickness and the zero traction boundary conditions on the top and bottom surfaces of the plate are respected without utilizing shear correction factors. The number of independent variables of the current formulation is four, as against five in other shear deformation models. The governing equations are deduced based on the four-variable refined plate theory incorporating the external load and hygro-thermal influences. The results of this work are compared with those of other shear deformation models. Various numerical examples introducing the influence of power-law index, plate aspect ratio, temperature difference, elastic foundation parameters, and side-to-thickness ratio on the static behavior of S-FGM plates are investigated.

Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory

  • Abdulrazzaq, Mohammed Abdulraoof;Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.147-157
    • /
    • 2020
  • In the present research, thermo-elastic buckling of small scale functionally graded material (FGM) nano-size plates with clamped edge conditions rested on an elastic substrate exposed to uniformly, linearly and non-linearly temperature distributions has been investigated employing a secant function based refined theory. Material properties of the FGM nano-size plate have exponential gradation across the plate thickness. Using Hamilton's rule and non-local elasticity of Eringen, the non-local governing equations have been stablished in the context of refined four-unknown plate theory and then solved via an analytical method which captures clamped boundary conditions. Buckling results are provided to show the effects of different thermal loadings, non-locality, gradient index, shear deformation, aspect and length-to-thickness ratios on critical buckling temperature of clamped exponential graded nano-size plates.

A novel four variable refined plate theory for laminated composite plates

  • Merdaci, Slimane;Tounsi, Abdelouahed;Bakora, Ahmed
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.713-732
    • /
    • 2016
  • A novel four variable refined plate theory is proposed in this work for laminated composite plates. The theory considers a parabolic distribution of the transverse shear strains, and respects the zero traction boundary conditions on the surfaces of the plate without employing shear correction coefficient. The displacement field is based on a novel kinematic in which the undetermined integral terms are used, and only four unknowns are involved. The analytical solutions of antisymmetric cross-ply and angle-ply laminates are determined via Navier technique. The obtained results from the present model are compared with three-dimensional elasticity solutions and results of the first-order and the other higher-order theories reported in the literature. It can be concluded that the developed theory is accurate and simple in investigating the bending and buckling responses of laminated composite plates.

On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model

  • Belkorissat, Ismahene;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bedia, E.A. Adda;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1063-1081
    • /
    • 2015
  • In this paper, a new nonlocal hyperbolic refined plate model is presented for free vibration properties of functionally graded (FG) plates. This nonlocal nano-plate model incorporates the length scale parameter which can capture the small scale effect. The displacement field of the present theory is chosen based on a hyperbolic variation in the in-plane displacements through the thickness of the nano-plate. By dividing the transverse displacement into the bending and shear parts, the number of unknowns and equations of motion of the present theory is reduced, significantly facilitating structural analysis. The material properties are assumed to vary only in the thickness direction and the effective properties for the FG nano-plate are computed using Mori-Tanaka homogenization scheme. The governing equations of motion are derived based on the nonlocal differential constitutive relations of Eringen in conjunction with the refined four variable plate theory via Hamilton's principle. Analytical solution for the simply supported FG nano-plates is obtained to verify the theory by comparing its results with other available solutions in the open literature. The effects of nonlocal parameter, the plate thickness, the plate aspect ratio, and various material compositions on the dynamic response of the FG nano-plate are discussed.

Flexural and free vibration responses of thick isotropic bridge deck using a novel two variable refined plate theory

  • Djidar, Fatima Zohra;Hebali, Habib;Amara, Khaled;Tounsi, Abdelouahed;Bendaho, Boudjema;Ghazwani, M.H.;Hussain, Muzamal
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.725-734
    • /
    • 2022
  • This work presents a simple exponential shear deformation theory for the flexural and free vibration responses of thick bridge deck. Contrary to the existing higher order shear deformation theories (HSDT) and the first shear deformation theory (FSDT), the proposed model uses a new displacement field which incorporates undetermined integral terms and involves only two variables. Governing equations and boundary conditions of the theory are derived by the principle of virtual work. The simply supported thick isotropic square and rectangular plates are considered for the detailed numerical studies. Results of displacements, stresses and frequencies are compared with those of other refined theories and exact theory to show the efficiency of the proposed theory. Good agreement is achieved of the present results with those of higher order shear deformation theory (HSDT) and elasticity theory. Moreover, results demonstrate that the developed two variable refined plate theory is simple for solving the flexural and free vibration responses of thick bridge deck and can achieve the same accuracy of the existing HSDTs which have more number of variables.

Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory

  • Bouderba, Bachir
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.311-325
    • /
    • 2018
  • This article presents the bending analysis of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment. Theoretical formulations are based on a recently developed refined shear deformation theory. The displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the thickness of the plate. The present theory satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the present refined shear deformation theory contains only four unknowns as against five in case of other shear deformation theories. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. The elastic foundation is modeled as non-uniform foundation. The results of the shear deformation theories are compared together. Numerical examples cover the effects of the gradient index, plate aspect ratio, side-to-thickness ratio and elastic foundation parameters on the thermo-mechanical behavior of functionally graded plates. Numerical results show that the present theory can archive accuracy comparable to the existing higher order shear deformation theories that contain more number of unknowns.

Modeling wave propagation in graphene sheets influenced by magnetic field via a refined trigonometric two-variable plate theory

  • Fardshad, R. Ebrahimi;Mohammadi, Y.;Ebrahimi, F.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.329-338
    • /
    • 2019
  • In this paper, the magnetic field influence on the wave propagation characteristics of graphene nanosheets is examined within the frame work of a two-variable plate theory. The small-scale effect is taken into consideration based on the nonlocal strain gradient theory. For more accurate analysis of graphene sheets, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. A derivation of the differential equation is conducted, employing extended principle of Hamilton and solved my means of analytical solution. A refined trigonometric two-variable plate theory is employed in Kinematic relations. The scattering relation of wave propagation in solid bodies which captures the relation of wave number and the resultant frequency is also investigated. According to the numerical results, it is revealed that the proposed modeling can provide accurate wave dispersion results of the graphene nanosheets as compared to some cases in the literature. It is shown that the wave dispersion characteristics of graphene sheets are influenced by magnetic field, elastic foundation and nonlocal parameters. Numerical results are presented to serve as benchmarks for future analyses of graphene nanosheets.

Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory

  • Issad, Mohammed Naim;Fekrar, Abdelkader;Bakora, Ahmed;Bessaim, Aicha;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.711-719
    • /
    • 2018
  • The present work presents a free vibration and buckling analysis of orthotropic plates by proposing a novel two variable refined plate theory. Contrary to the conventional higher order shear deformation theories (HSDT) and the first shear deformation theory (FSDT), the proposed theory utilizes a novel displacement field which incorporates undetermined integral terms and involves only two unknowns. The governing equations are obtained from the dynamic version of principle of virtual works. The analytical solution of a simply supported orthotropic plate has been determined by using the Navier method. Numerical investigations are performed by employing the proposed model and the obtained results are compared with the existing HSDTs.