• Title/Summary/Keyword: reference surfaces

Search Result 142, Processing Time 0.027 seconds

A comparative study on the relationship of investing medium to vertical occusal change and surface smoothing during denture processing (Resin processing시(時) 매몰재(埋沒材)에 따른 교합고경(咬合高涇) 및 의치표면(義齒表面) 활택도(滑澤度)의 변화(變化)에 관(關)한 연구(硏究))

  • Kim, Uoong-Chul;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.3 no.1
    • /
    • pp.9-16
    • /
    • 1981
  • A comparative study was conducted to evaluate the relationship of investing medium to the amount of vertical occlusal changes and to the differences of surface smoothness during denture construction. Three groups of 20 dentures, 30 sets of upper and lower were fabricated of conventional heatcuring acrylic denture base resin, using silicone-gypsum molding techniques, with or without covering the occlusal surfaces of the teeth by artificial stone and all-gypsum molding techniques. The distance between the two reference points indented by 1/2 round bur on the upper and lower frontal surfaces of each articulator were measured and recorded before processing and again after processing and remounting of each denture on the articulator. The differences between the two recordings indicated the amount of vertical opening during denture processing. The difference of surface smoothness were investigated and determined by 3 observers continual comparing of the two randomly selected dentures with each other, which were seperately selected as pairs from the different two groups of 20. The results obtained were as follows: 1. During resin processing no statistically significant differences of the amount of vertical occlusal changes were detected between any of the two groups of two silicone-gypsum and one allgypsum molding techniques, although the amount of vertical opening was somewhat increased when silicone-gypsum molding technique was used. 2. Surface smoothness of the processed denture was makedly by increased when silicone-gypsum molding technique was used.

  • PDF

Influence of ventilation rate on the aerodynamic interference between two extra-large indirect dry cooling towers by CFD

  • Ke, S.T.;Liang, J.;Zhao, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.449-468
    • /
    • 2015
  • Current wind-resistance designs of large-scale indirect dry cooling towers (IDCTs) exclude an important factor: the influence of the ventilation rate for radiator shutter on wind loads on the outer surfaces of the tower shell. More seemingly overlooked aspects are the effects of various ventilation rates on the wind pressure distribution on the tower surfaces of two IDCTs, and the feature of the flow field around them. In order to investigate the effects of the radiator shutter ventilation rates on the aerodynamic interference between IDCTs, this paper established the numerical wind tunnel model based on the Computational Fluid Dynamic (CFD) technology, and analyzed the influences of various radiator shutter ventilation rates on the aerodynamic loads acting upon a single and two extra-large IDCTs during building, installation, and operation stages. Through the comparison with the results of physical wind tunnel test and different design codes, the results indicated that: the influence of the ventilation rate on the flow field and shape coefficients on the outer surface of a single IDCT is weak, and the curve of mean shape coefficients is close to the reference curve provided by the current design code. In a two-tower combination, the ventilation rate significantly affects the downwind surface of the front tower and the upwind surface of the back tower, and the larger positive pressure shifts down along the upwind surface of the back tower as the ventilation rate increases. The ventilation rate significantly influences the drag force coefficient of the back tower in a two-tower combination, the drag force coefficient increases with the ventilation rate and reaches the maximum in a building status of full ventilation, and the maximum drag coefficient is 11% greater than that with complete closure.

Analysis of Heat Loss with Mirror Array and Receiver Shapes on the Dish Solar Collector (반사경 배치 및 흡수기 형상에 따른 접시형 태양열 집열기의 열손실 해석)

  • Seo, Joo-Hyun;Ma, Dae-Sung;Kim, Yong;Kang, Yong-Heack;Seo, Tae-Beom
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 2008
  • The radiative heat loss from a receiver of a dish solar collector is numerically investigated. The dish solar collector considered in this paper consists of a receiver and multi-faceted mirrors. In order to investigate the performance comparison of dish solar collectors, six different mirror arrays and four different receivers are considered. A parabolic- shaped perfect mirror of which diameter is 1.40 m is considered as the reference for the mirror arrays. The other mirror arrays which consist of twelve identical parabolic-shaped mirror facets of which diameter are 0.405 m are suggested for comparison. Their reflecting areas, which are 1.545 $m^{2}$, are the same. Four different receiver shapes are a conical, a dome, a cylindrical, and a unicorn type. The radiative properties of the mirror surfaces and the receiver surfaces may vary the thermal performance of the dish solar collector so that various surface properties are considered. In order to calculate the radiative heat loss in the receiver, two kinds of methods are used. The Net Radiation Method that is based on the radiation heat balance on the surface is used to calculate the radiation heat transfer rate from the inside surface of the receiver to the environment. The Monte-Carlo Method that is the statistical approach is adopted to predict the radiation heat transfer rate from the reflector to the receiver. The collector efficiency is defined as the results of the optical efficiency and the receiver efficiency. Based on the calculation, the unicorn type has the best performance in receiver shapes and the STAR has the best performance in mirror arrays except the perfect mirror.

Hydrophobic Organic/Inorganic Composite Films with 3D Hierarchical Nanostructured Surfaces (3D 계층적 나노구조화된 표면을 갖는 소수성 유/무기 복합 필름)

  • Seo, Huijin;Ahn, Jinseong;Park, Junyong
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.264-268
    • /
    • 2021
  • In this study, we propose a method for fabricating hydrophobic coatings/films with three-dimensional (3D) hierarchical nanostructured organic/inorganic composite surfaces. An epoxy-based, large-area 3D ordered nanoporous template is first prepared through an advanced photolithography technique called Proximity-field nanoPatterning (PnP). Then, a hierarchically structured surface is generated by densely impregnating the template with silica nanoparticles with an average diameter of 22 nm through dip coating. Due to the coexisting micro- and nano-scale roughness on the surface, the fabricated composite film exhibits a higher contact angle (>137 degrees) for water droplets compared to the reference samples. Therefore, it is expected that the materials and processes developed through this study can be used in various ways in the traditional coating/film field.

Positional Changes of the Internal Reference Points Followed by Reposition of the Maxilla - A Study of a 3D Virtual Surgery Program (상악골 재위치술 시행 시 골편의 이동량에 따른 내측기준점의 변화 - 3차원 가상수술 프로그램을 이용한 연구)

  • Suh, Young-Bin;Park, Jae-Woo;Kwon, Min-Su
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.5
    • /
    • pp.413-419
    • /
    • 2011
  • Purpose: Reposition of the maxilla is a common technique for correction of midfacial deformities. To achieve the goal of the surgery, the maxilla should be repositioned based on the precisely planned position during surgery. The internal reference points (IRPs) and the external reference points (ERPs) are usually used to determine vertical dimension of maxilla, which is an important factor for confirming maxillary position. However, the IRPs are known to be inaccurate in determining the vertical dimension. In this study, we investigated the correlation of positional change of the modified IRPs with repositioned maxilla. Methods: The study group consisted of 26 patients with dentofacial deformities. For the simulation of the surgery, patient maxillary CT data and 3-D virtual surgery programs (V-$Works^{(R)}$ and V-$Surgery^{(R)}$) were used. IRPs of this study were set on both the lateral wall of piriform aperture, inferior margin of both infraorbital foramen, and the labial surfaces of the canine and first molar. The distance from the point on lateral wall of the piriform aperture to the point on the buccal surface of the canine was defined as IRP-C, and the distance from the point on the inferior margin of the infraorbital foramen to the point on the buccal surface of the $1^{st}$ molar was defined as IRP-M. After the virtual simulation of Le Fort I osteotomy, the changes in IRP-C and IRP-M were compared with the maxillary movement. All measures were analyzed statistically. Results: With respect to vertical movements, the IRP-C (approximately 98%) and the IRP-M (approximately 96%) represented the movement of the canine and the $1^{st}$ molar. Regarding rotating movement, the IRPs changed according to the movement of the canine and the $1^{st}$ molar. In particular, the IRP-C was changed in accordance with the canine. Conclusion: IRPs could be good indicators for predicting vertical movements of the maxilla during surgery.

A Study of Carry Over Contamination in Chematology (이월오염에 대한 연구)

  • Chang, Sang-Wu;Kim, Nam-Yong;Lyu, Jae-Gi;Jung, Dong-Jin;Kim, Gi-You;Park, Yong-Won;Chu, Kyung-Bok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.3
    • /
    • pp.178-184
    • /
    • 2005
  • Carry over contamination has been reduced in some systems by flushing the internal and external surfaces of the sample probe with copious amount of diluent. It between specimens should be kept as small as possible. A built-in, continuous-flow wash reservoir, which allows the simultaneous washing of the interior and exterior of the syringe needles, addresses this issue. In addition, residual contamination can further be prevented through the use of efficient needle rinsing procedures. In discrete systems with disposable reaction vessels and measuring cuvets, any carry over is entirely caused by the pipetting system. In analyzers with reuseable cuvets or flow cells, carry over may arise at every point through which high samples pass sequentially. Therefore, disposable sample probe tips can eliminate both the contamination of one sample by another inside the probe and the carry over of in specimen into the specimen in the cup. The results of the applicative carry over experiment studied on 21 items for total protein (TP), albumin (ALB), total bilirubin (TB), alkaline phosphatase (ALP), aspratate aminotranferase (AST), alanine aminotranferase (ALT), gamma glutamyl transferase (GGT), creatinine kinase (CK), lactic dehydrogenase (LD), creatnine (CRE), blood urea nitrogen (BUN), uric acid (UA), total cholesterol (TC), triglyceride (TG), glucose (GLU), amylase (AMY), calcium (CA), inorganic phosphorus (IP), sodium (Na), potassium (K), chloride (CL) tests in chematology were as follows. Evaluation of process performance less than 1% in all tests was very good, but a percentage of ALB, TP, TB, ALP, CRE, UA, TC, GLU, AMY, IP, K, Na, and CL was 0%, implying no carry over. Other tests were ALT(-0.08%), GGT(-0.09%), CK(0.08%), LD(0.06%), BUN(0.12%), TG (-0.06%), and CA(0.89%).

  • PDF

In vitro performance and fracture resistance of novel CAD/CAM ceramic molar crowns loaded on implants and human teeth

  • Preis, Verena;Hahnel, Sebastian;Behr, Michael;Rosentritt, Martin
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.300-307
    • /
    • 2018
  • PURPOSE. To investigate the fatigue and fracture resistance of computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic molar crowns on dental implants and human teeth. MATERIALS AND METHODS. Molar crowns (n=48; n=8/group) were fabricated of a lithium-disilicate-strengthened lithium aluminosilicate glass ceramic (N). Surfaces were polished (P) or glazed (G). Crowns were tested on human teeth (T) and implant-abutment analogues (I) simulating a chairside (C, crown bonded to abutment) or labside (L, screw channel) procedure for implant groups. Polished/glazed lithium disilicate (E) crowns (n=16) served as reference. Combined thermal cycling and mechanical loading (TC: $3000{\times}5^{\circ}C/3000{\times}55^{\circ}C$; ML: $1.2{\time}10^6$ cycles, 50 N) with antagonistic human molars (groups T) and steatite spheres (groups I) was performed under a chewing simulator. TCML crowns were then analyzed for failures (optical microscopy, SEM) and fracture force was determined. Data were statistically analyzed (Kolmogorow-Smirnov, one-way-ANOVA, post-hoc Bonferroni, ${\alpha}=.05$). RESULTS. All crowns survived TCML and showed small traces of wear. In human teeth groups, fracture forces of N crowns varied between $1214{\pm}293N$ (NPT) and $1324{\pm}498N$ (NGT), differing significantly ($P{\leq}.003$) from the polished reference EPT ($2044{\pm}302N$). Fracture forces in implant groups varied between $934{\pm}154N$ (NGI_L) and $1782{\pm}153N$ (NPI_C), providing higher values for the respective chairside crowns. Differences between polishing and glazing were not significant ($P{\geq}.066$) between crowns of identical materials and abutment support. CONCLUSION. Fracture resistance was influenced by the ceramic material, and partly by the tooth or implant situation and the clinical procedure (chairside/labside). Type of surface finish (polishing/glazing) had no significant influence. Clinical survival of the new glass ceramic may be comparable to lithium disilicate.

Multi-camera System Calibration with Built-in Relative Orientation Constraints (Part 1) Theoretical Principle

  • Lari, Zahra;Habib, Ayman;Mazaheri, Mehdi;Al-Durgham, Kaleel
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.191-204
    • /
    • 2014
  • In recent years, multi-camera systems have been recognized as an affordable alternative for the collection of 3D spatial data from physical surfaces. The collected data can be applied for different mapping(e.g., mobile mapping and mapping inaccessible locations)or metrology applications (e.g., industrial, biomedical, and architectural). In order to fully exploit the potential accuracy of these systems and ensure successful manipulation of the involved cameras, a careful system calibration should be performed prior to the data collection procedure. The calibration of a multi-camera system is accomplished when the individual cameras are calibrated and the geometric relationships among the different system components are defined. In this paper, a new single-step approach is introduced for the calibration of a multi-camera system (i.e., individual camera calibration and estimation of the lever-arm and boresight angles among the system components). In this approach, one of the cameras is set as the reference camera and the system mounting parameters are defined relative to that reference camera. The proposed approach is easy to implement and computationally efficient. The major advantage of this method, when compared to available multi-camera system calibration approaches, is the flexibility of being applied for either directly or indirectly geo-referenced multi-camera systems. The feasibility of the proposed approach is verified through experimental results using real data collected by a newly-developed indirectly geo-referenced multi-camera system.

Blast Overpressure Evaluation for Blast Valves in Protective Tunnels with Rectangular-Shaped Tunnel Entrances (각형 출입구를 갖는 방호터널의 방폭밸브에 미치는 폭압 평가)

  • Pang, Seungki;Shin, Jinwon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.79-90
    • /
    • 2021
  • This paper presents a study to reduce the effect of blast pressure on the blast valves installed in protection tunnels, where the shape of the tunnel entrance and the blast pocket is optimized based on the predetermined basic shape of the protective tunnels. The reliability of the numerical tunnel models was examined by performing analyses of mesh convergence and overpressure stability and with comparison to the data in blast-load design charts in UFC 3-340-02 (DoD, 2008). An optimal mesh size and a stabilized distance of overpressure were proposed, and the numerical results were validated based on the UFC data. A parametric study to reduce the blast overpressures in tunnel was conducted using the validated numerical model. Analysis was performed applying 1) the entrance slope of 90, 75, 60, and 45 degrees, 2) two blast pockets with the depth 0.5, 1.0, and 1.5 times the tunnel width, 3) the three types of curved back walls of the blast pockets, and 4) two types of the upper and lower surfaces of the blast pockets to the reference tunnel model. An optimal solution by combining the analysis results of the tunnel entrance shape, the depth of the blast pockets, and the upper and lower parts of the blast pockets was provided in comparison to the reference tunnel model. The blast overpressures using the proposed tunnel shape have been reduced effectively.

Three-dimensional morphometric analysis of facial units in virtual smiling facial images with different smile expressions

  • Hang-Nga Mai;Thaw Thaw Win;Minh Son Tong;Cheong-Hee Lee;Kyu-Bok Lee;So-Yeun Kim;Hyun-Woo Lee;Du-Hyeong Lee
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • PURPOSE. Accuracy of image matching between resting and smiling facial models is affected by the stability of the reference surfaces. This study aimed to investigate the morphometric variations in subdivided facial units during resting, posed and spontaneous smiling. MATERIALS AND METHODS. The posed and spontaneous smiling faces of 33 adults were digitized and registered to the resting faces. The morphological changes of subdivided facial units at the forehead (upper and lower central, upper and lower lateral, and temple), nasal (dorsum, tip, lateral wall, and alar lobules), and chin (central and lateral) regions were assessed by measuring the 3D mesh deviations between the smiling and resting facial models. The one-way analysis of variance, Duncan post hoc tests, and Student's t-test were used to determine the differences among the groups (α = .05). RESULTS. The smallest morphometric changes were observed at the upper and central forehead and nasal dorsum; meanwhile, the largest deviation was found at the nasal alar lobules in both the posed and spontaneous smiles (P < .001). The spontaneous smile generally resulted in larger facial unit changes than the posed smile, and significant difference was observed at the alar lobules, central chin, and lateral chin units (P < .001). CONCLUSION. The upper and central forehead and nasal dorsum are reliable areas for image matching between resting and smiling 3D facial images. The central chin area can be considered an additional reference area for posed smiles; however, special cautions should be taken when selecting this area as references for spontaneous smiles.