• 제목/요약/키워드: reference energy

검색결과 1,621건 처리시간 0.031초

Nutritional and health consequences are associated with food insecurity among Korean elderly: Based on the fifth (2010) Korea National Health and Nutrition Examination Survey (KNHANES V-1) (한국 노인에서 식품불안정 (food insecurity)이 건강상태 및 식이섭취상태에 미치는 영향 연구: 국민건강영양조사 제 5기 1차년도 (2010) 자료를 이용하여)

  • Lee, Seungjae;Lee, Kyung Won;Oh, Ji Eun;Cho, Mi Sook
    • Journal of Nutrition and Health
    • /
    • 제48권6호
    • /
    • pp.519-529
    • /
    • 2015
  • Purpose: The purpose of this study was to examine the prevalence of food insecurity in Korean elderly and to analyze the health status as well as food and nutrient intakes according to food insecurity status. Methods: A total of 939 elderly subjects (over 65 years old) were used in our analysis from the fifth 2010 Korean National Health and Nutrition Examination Survey (KNHANES V-1). The variables consisted of general characteristics, physical and mental health, nutrient intake, rate of deficient intake of energy and nutrients compared with Dietary Reference Intakes for Koreans (KDRIs) and food quality and diversity according to the status of food insecurity. Food insecurity status was measured using a self-reported food security questionnaire on the dietary situation in the previous year, and participants were classified according to three groups: food secure group, mildly food insecure group, and moderately/severely food insecure group. Results: The proportion of the food insecure group was approximately 67% and the food insecure group had lower income and educational status than the food secure group. Food insecurity was associated with worse physical and mental health status after adjusting potentially confounding variables. The results showed that food insecurity in Korean elderly significantly affected mental health (including stress cognition, depression experience, and suicide thoughts) which exceeded stages of physical health. In addition, food insecurity showed significant association with low nutrient intake and high rate of deficient intakes of energy and nutrients compared with KDRIs, and a reduction of dietary quality and diversity was indicated in the food insecure group. Conclusion: This study concludes that the prevalence of food insecurity may affect the physical and mental health as well as dietary intake of the elderly Korean population. Therefore, food insecurity should be considered as an important public health issue in Korea.

Marine Ecotoxicological Assessment Using the Nauplius of Marine Harpacticoid Copepod Tigriopus japonicus (저서성 해산 요각류 harpacticoid Tigriopus japonicus 유생을 이용한 해양생태독성평가)

  • Yoon Sung-Jin;Park Gyung-Soo;Oh Jeong-Hwan;Park Soung-Yun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • 제9권3호
    • /
    • pp.160-167
    • /
    • 2006
  • Harpacticoid copepod Tigriopus japonicus is widely distributed in coastal waters of Korea and plays important role in marine trophic structure as a first consumer. In this study, a series of experiment were conducted to test the potential of the species as a standard test species for marine bioassay. Tolerance on salinity and pH, sensitivity on the reference materials(copper sulfate and cadmium chloride) and response on the ocean dumping materials(waste sludge) we re tested to identify if the species satisfy the basic criteria as standard species for marine bioassay. The nauplius of the species($100{\sim}200{\mu}m$) showed wide tolerance on salinity with >90.0% survival rates exposed to $5.0{\sim}35.0psu$ for 48 h. Wide adaptability on pH's were also observed from 6.3 to 8.2 with >90.0% survival rates during the test. $LC_{50}$ values for copper sulfate and cadmium chloride were $3.6{\pm}0.7ppm,\;1.7{\pm}0.8ppm$, respectively. The variations in mortality between replicates were less than 10.0%. Comparison of $LC_{50}$ values indicated that T. japonicus nauplius was lower sensitive to copper sulfate than the most marine crustaceans included copepods, however, the sensitivity of test animal to cadmium chloride higher than the adults of copepod T. japonicus, Paracalanus parvus, and marine rotifer Brachinonus plicatilis. There were significant concentration-response relationship in the mortality of T. japonicus nauplius using the elutriates of three ocean dumping materials(industrial waste sludge). 48 h $LC_{50}$ values we re $31.1{\pm}1.1%$ for the elutriate of sludge from leather processing company and $54.4{\pm}15.1%$ for that of dye production company. Based on the above experimental results, bioassay using benthic harpacticoid T. japonicus nauplius must be a good estimation tool for marine ecotoxicological assessment of waste or chemicals. Wide tolerance on the salinity and pH, and significant linear relationship between concentration and response(mortality) supported the high potential of the species as a standard test species.

  • PDF

Impact of Sulfur Dioxide Impurity on Process Design of $CO_2$ Offshore Geological Storage: Evaluation of Physical Property Models and Optimization of Binary Parameter (이산화황 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태량 모델의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • 제13권3호
    • /
    • pp.187-197
    • /
    • 2010
  • Carbon dioxide Capture and Storage(CCS) is regarded as one of the most promising options to response climate change. CCS is a three-stage process consisting of the capture of carbon dioxide($CO_2$), the transport of $CO_2$ to a storage location, and the long term isolation of $CO_2$ from the atmosphere for the purpose of carbon emission mitigation. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the $CO_2$ mixture captured from the power plants and steel making plants contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_2$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification, transport and injection processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to analyze the impact of these impurities on the whole CCS process at initial design stage. The purpose of the present paper is to compare and analyse the relevant physical property models including BWRS, PR, PRBM, RKS and SRK equations of state, and NRTL-RK model which are crucial numerical process simulation tools. To evaluate the predictive accuracy of the equation of the state for $CO_2-SO_2$ mixture, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $SO_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable physical property model with optimized binary parameter in designing the $CO_2-SO_2$ mixture marine geological storage process.

Effect of Nitrogen Impurity on Process Design of $CO_2$ Marine Geological Storage: Evaluation of Equation of State and Optimization of Binary Parameter (질소 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태방정식의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • 제12권3호
    • /
    • pp.217-226
    • /
    • 2009
  • Marine geological storage of $CO_2$ is regarded as one of the most promising options to response climate change. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources, to transport to the storage sites and to store $CO_2$ into the marine geological structure such as deep sea saline aquifer. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the captured $CO_2$ mixture contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_x$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification and transport processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to perform numerical process simulation using thermodynamic equation of state. The purpose of the present paper is to compare and analyse the relevant equations of state including PR, PRBM, RKS and SRK equation of state for $CO_2-N_2$ mixture. To evaluate the predictive accuracy of the equation of the state, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $N_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable equation of state and relevant binary parameter in designing the $CO_2-N_2$ mixture marine geological storage process.

  • PDF

Marine Environmental Characteristics of Goheung Coastal Waters during Cochlodinium polykrikoides Blooms (Cochlodinium polykrikoides 적조 발생시의 한국 남해안 고흥 연안의 해양환경 특징)

  • Lee, Moon Ock;Kim, Byeong Kuk;Kim, Jong Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • 제18권3호
    • /
    • pp.166-178
    • /
    • 2015
  • We investigated marine environmental characteristics of Goheung coastal areas in August where is known to be the first outbreak site of Cochlodinium polykrikoides (hereafter C. polykrikoides) blooms, based on the oceanographic data observed from 1993 to 2013 around the Korean southern coastal waters including Eastern China Sea by National Fisheries Research and Development Institute (NFRDI). The data of NOAA/NGSST satellite images as well as numerical simulation results by Seo et al. [2013] were also used for analysis. Water temperatures at the surface and bottom layers in Goheung coast, i.e. Narodo, were $25.0^{\circ}C$ and $23.7^{\circ}C$ so that they were higher than $23.8^{\circ}C$ and $19.4^{\circ}C$ in Geoje coast where is a reference site, respectively. In addition, salinities at the surface and bottom layers in Goheung coast were 31.78 psu and 31.98 psu so that they were a little higher than 31.54 psu at the surface but a little lower than 32.79 psu at the bottom in Geoje coast, respectively. That is, the differences in water temperature or salinity between the surface and bottom layers in Goheung coast in August were not large compared to Geoje coast. This suggests that stratification in Goheung coast in August is fairly weak or may not be established. In addition, the concentrations of DIN and DIP at the surface layer were 0.068 mg/L ($4.86{\mu}M$) and 0.015 mg/L ($5.14{\mu}M$) in Goheung coast while 0.072 mg/L ($5.14{\mu}M$) and 0.01 mg/L ($0.32{\mu}M$) in Geoje coast, so they did not indicate a meaningful difference. On the other hand, when C. polykrikoides blooms, water temperature and salinity in August at the station 317-22 ($31.5^{\circ}N$, $124^{\circ}E$) of the East China Sea, where is near the mouth of Yangtze River, were $27.8^{\circ}C$ and 31.61 psu, respectively. Thus, water temperature was much higher whereas salinity was almost similar compared to Goheung coast. Furthermore, concentrations of $NO_3-N$ and $PO_4-P$ in the East China Sea in August were remarkably high compared to Goheung coast. When C. polykrikoides blooms, according to not only the image data of satellites NOAA/NGSST but also numerical experiment results by Seo et al.[2013], the freshwater out of Yangtze River was judged to clearly affect the Korean southern coastal waters. Therefore, the supply of nutrients in terms of Yangtze River may greatly contribute to the outbreak of C. polykrikoides blooms in Goheung coast in summer.

Methodological Comparison of the Quantification of Total Carbon and Organic Carbon in Marine Sediment (해양 퇴적물내 총탄소 및 유기탄소의 분석기법 고찰)

  • Kim, Kyeong-Hong;Son, Seung-Kyu;Son, Ju-Won;Ju, Se-Jong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • 제9권4호
    • /
    • pp.235-242
    • /
    • 2006
  • The precise estimation of total and organic carbon contents in sediments is fundamental to understand the benthic environment. To test the precision and accuracy of CHN analyzer and the procedure to quantify total and organic carbon contents(using in-situ acidification with sulfurous acid($H_2SO_3$)) in the sediment, the reference material s such as Acetanilide($C_8H_9NO$), Sulfanilammide($C_6H_8N_2O_2S$), and BCSS-1(standard estuary sediment) were used. The results indicate that CHN analyzer to quantify carbon and nitrogen content has high precision(percent error=3.29%) and accuracy(relative standard deviation=1.26%). Additionally, we conducted the instrumental comparison of carbon values analyzed using CHN analyzer and Coulometeric Carbon Analyzer. Total carbon contents measured from two different instruments were highly correlated($R^2=0.9993$, n=84, p<0.0001) with a linear relationship and show no significant differences(paired t-test, p=0.0003). The organic carbon contents from two instruments also showed the similar results with a significant linear relationship($R^2=0.8867$, n=84, p<0.0001) and no significant differences(paired t-test, p<0.0001). Although it is possible to overestimate organic carbon contents for some sediment types having high inorganic carbon contents(such as calcareous ooze) due to procedural and analytical errors, analysis of organic carbon contents in sediments using CHN Analyzer and current procedures seems to provide the best estimates. Therefore, we recommend that this method can be applied to measure the carbon content in normal any sediment samples and are considered to be one of the best procedure far routine analysis of total and organic carbon.

  • PDF

Effects of Nutrition Education in Type 2 Diabetes Mellitus on Diabetes Control and Blood Antioxidant Status (제2형 당뇨환자에 대한 영양교육이 당뇨병 관리와 혈액 항산화 상태에 미치는 영향)

  • Shin, Kyung-Nam;Lee, Hye-Sang;Kwon, Chong-Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제40권5호
    • /
    • pp.689-695
    • /
    • 2011
  • Diabetic patients need nutritional education more than those suffering from other diseases because of the necessity of controlling blood glucose levels with dietary treatment. The purpose of this study was to find out the effectiveness of nutrition education on diabetes control and antioxidant status, both of which are related to diabetic complications. Thirty (15 males and 15 females) type 2 diabetes mellitus patients aged $66.7{\pm}8.8$ years participated in a 4-week nutrition education program. Nutrient intakes, blood glucose level, antioxidant status, and DNA damage were evaluated before, immediately after, and three months after the education program. Changes in those parameters over time were analyzed using repeated-measures analysis of covariance. Over time, HbA1c (p=0.000), plasma total cholesterol (p=0.002), plasma thiobarbituric acid related substances (TBARS; p=0.000), and leukocyte DNA damage (p=0.000) significantly decreased; plasma retinol (p=0.001), plasma tocopherol (p=0.000), erythrocyte catalase (CAT; p=0.000), and erythrocyte glutathione peroxidase (GPx; p=0.000) significantly increased. In an evaluation of nutrient intakes by Dietary Reference Intakes for Koreans (KDRI), energy (p=0.009), phosphorus (p=0.033), sodium (p=0.001), potassium (p=0.019), zinc (p=0.043), riboflavin (p=0.050), folic acid (p=0.048) and vitamin C (p=0.008) intakes had significant positive changes. In a correlation analysis of the biochemical and nutritional changes resulting from the education program, plasma TBARS were negatively correlated with potassium (r=-0.418, p<0.05), iron (r=-0.443, p<0.05), riboflavin (r=-0.432, p<0.05), and folic acid (r=-0.446, p<0.05) intakes, while plasma retinol was positively correlated with energy (r=0.543, p<0.01), protein (r=0.543, p<0.01), phosphorus (r=0.425, p<0.05), iron (r=0.485, p<0.05), zinc (r=0.570, p<0.01) and niacin (r=0.510, p<0.05) intakes. Erythrocyte CAT was positively correlated with folic acid intake (r=0.605, p<0.01). From these results, we suggest that an improvement in nutrition resulting from a diabetic education program for type 2 diabetes patients led to improvement in their antioxidant status, also possibly reducing complications resulting from diabetes.

$CO_2$ Transport for CCS Application in Republic of Korea (이산화탄소 포집 및 저장 실용화를 위한 대한민국에서의 이산화탄소 수송)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • 제13권1호
    • /
    • pp.18-29
    • /
    • 2010
  • Offshore subsurface storage of $CO_2$ is regarded as one of the most promising options to response severe climate change. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources, to transport to the storage sites and to store $CO_2$ into the offshore subsurface geological structure such as the depleted gas reservoir and deep sea saline aquifer. Since 2005, we have developed relevant technologies for marine geological storage of $CO_2$. Those technologies include possible storage site surveys and basic designs for $CO_2$ transport and storage processes. To design a reliable $CO_2$ marine geological storage system, we devised a hypothetical scenario and used a numerical simulation tool to study its detailed processes. The process of transport $CO_2$ from the onshore capture sites to the offshore storage sites can be simulated with a thermodynamic equation of state. Before going to main calculation of process design, we compared and analyzed the relevant equation of states. To evaluate the predictive accuracies of the examined equation of states, we compare the results of numerical calculations with experimental reference data. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the captured $CO_2$ mixture contains many impurities such as $N_2$, $O_2$, Ar, $H_{2}O$, $SO_{\chi}$, $H_{2}S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification and transport processes. This paper analyzes the major design parameters that are useful for constructing onshore and offshore $CO_2$ transport systems. On the basis of a parametric study of the hypothetical scenario, we suggest relevant variation ranges for the design parameters, particularly the flow rate, diameter, temperature, and pressure.

Validation of Load Calculation Method for Greenhouse Heating Design and Analysis of the Influence of Infiltration Loss and Ground Heat Exchange (온실 난방부하 산정방법의 검증 및 틈새환기와 지중전열의 영향 분석)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Horticultural Science & Technology
    • /
    • 제33권5호
    • /
    • pp.647-657
    • /
    • 2015
  • To investigate a method for calculation of the heating load for environmental designs of horticultural facilities, measurements of total heating load, infiltration rate, and floor heat flux in a large-scale plastic greenhouse were analyzed comparatively with the calculation results. Effects of ground heat exchange and infiltration loss on the greenhouse heating load were examined. The ranges of the indoor and outdoor temperatures were $13.3{\pm}1.2^{\circ}C$ and $-9.4{\sim}+7.2^{\circ}C$ respectively during the experimental period. It was confirmed that the outdoor temperatures were valid in the range of the design temperatures for the greenhouse heating design in Korea. Average infiltration rate of the experimental greenhouse measured by a gas tracer method was $0.245h^{-1}$. Applying a constant ventilation heat transfer coefficient to the covering area of the greenhouse was found to have a methodological problem in the case of various sizes of greenhouses. Thus, it was considered that the method of using the volume and the infiltration rate of greenhouses was reasonable for the infiltration loss. Floor heat flux measured in the center of the greenhouse tended to increase toward negative slightly according to the differences between indoor and outdoor temperature. By contrast, floor heat flux measured at the side of the greenhouse tended to increase greatly into plus according to the temperature differences. Based on the measured results, a new calculation method for ground heat exchange was developed by adopting the concept of heat loss through the perimeter of greenhouses. The developed method coincided closely with the experimental result. Average transmission heat loss was shown to be directly proportional to the differences between indoor and outdoor temperature, but the average overall heat transfer coefficient tended to decrease. Thus, in calculating the transmission heat loss, the overall heat transfer coefficient must be selected based on design conditions. The overall heat transfer coefficient of the experimental greenhouse averaged $2.73W{\cdot}m^{-2}{\cdot}C^{-1}$, which represents a 60% heat savings rate compared with plastic greenhouses with a single covering. The total heating load included, transmission heat loss of 84.7~95.4%, infiltration loss of 4.4~9.5%, and ground heat exchange of -0.2~+6.3%. The transmission heat loss accounted for larger proportions in groups with low differences between indoor and outdoor temperature, whereas infiltration heat loss played the larger role in groups with high temperature differences. Ground heat exchange could either heighten or lessen the heating load, depending on the difference between indoor and outdoor temperature. Therefore, the selection of a reference temperature difference is important. Since infiltration loss takes on greater importance than ground heat exchange, measures for lessening the infiltration loss are required to conserve energy.

Yearly Trend of Sugar-Sweetened Beverage(SSB) Intake and Nutritional Status by SSB Intake Level in Korean Middle School Students Using the 2007~2015 Korea National Health and Nutrition Examination Survey (중학생의 가당음료 섭취량 변화 추이와 가당음료 섭취 수준에 따른 영양상태 평가: 2007~2015 국민건강영양조사를 이용하여)

  • Kim, Sun Hyo
    • Journal of Korean Home Economics Education Association
    • /
    • 제33권1호
    • /
    • pp.63-79
    • /
    • 2021
  • This study examined yearly trend of sugar-sweetened beverage(SSB) intake and compared nutritional status by SSB intake level in middle school students aged 12~14 years(n=2,543) using the data from 2007~2015 Korea National Health and Nutrition Examination Survey. SSB included carbonated drinks, sports drinks, and caffeinated drinks contained added sugar. Subjects were classified into three groups by SSB intake level obtained from 24-hour recall method: SSB 1(SSB intake 0 g/d), SSB 2(0 g/d < SSB intake < 50th percentile) and SSB 3(SSB intake ≥ 50th percentile). Result of daily intake of SSB was 76.1±6.2 g/d for boys and 59.5±4.7 g/d for girls and it was increased significantly for boys(p-trend 0.0004) and girls(p-trend 0.0038) by year. The most intakes were carbonated drinks followed by fruit juices and sports drinks for boys and girls. Percentage of daily intake compared to the dietary reference was increased for energy and iron while was decreased for calcium and vitamin C toward SSB 3 group. Ratio of excess intake of energy/fat was increased significantly for boys(p=0.0091) and girls(p<0.0001) toward SSB 3 group. Ratio of calcium deficiency was 86.8~94.9% for boys and girls and it was very high. Therefore, it should be emphasized to reduce SSB intake and drink plain water without added sugar, etc. and milk as a source of calcium for improving nutritional status of middle school students through dietary education and social support.