• Title/Summary/Keyword: redundant robot

Search Result 145, Processing Time 0.026 seconds

Torque Distribution Control of 3RRR Redundant Parallel Robot (여유구동 3RRR 병렬로봇의 힘분배 제어에 관한 연구)

  • Lee, Sang-Moon;Lee, Jeh-Won;Shim, Ho-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.72-79
    • /
    • 2008
  • In the redundant actuation system which has more actuators than a system's mobility, there are various method to determine actuated torques because those are not determined uniquely. This paper presents a torque distribution method using weighted-pseudoinverse to optimize the maximum torque of various actuated inputs of the redundant system. The various weighting factor of weighted-pseudoinverse is studied to reduce maximum actuated torque. This method is experimentally applied to 3RRR parallel robot, which shows that presented method can efficiently reduce the maximum actuated torque.

Real-time obstacle avoidance for redundant manipulator (여유 자유도 로봇의 실시간 충돌 회피)

  • 조웅장;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1140-1143
    • /
    • 1996
  • A new approach based on artificial potential function is proposed for the obstacle avoidance of redundant manipulators. Unlike the so-called "global" path planning method, which requires expensive computation for the path search before the manipulator starts to move, this new approach, "local" path planning, researches the path in real-time using the local distance information. Previous use of artificial potential function has exhibited local minima in some complex environments. This thesis proposes a potential function that has no local minima even for a cluttered environment. This potential function has been implemented for the collision avoidance of a redundant robot in Simulation. The simulation also employ an algorithm that eliminates collisions with obstacles by calculating the repulsive potential exerted on links, based on the shortest distance to object.

  • PDF

Redundancy Utilizations of Redundant Robot Manipulators Based on Configuration Control (형태제어에 기초한, 여유자유도를 갖는 로보트 머니퓰레이터의 여유자유도 이용에 관한 연구)

  • ;Homayoun Seraji
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.4
    • /
    • pp.422-432
    • /
    • 1992
  • Previous investigations of redundant manipulators have often focussed on local optimization for redundancy resolution by using the Jacobian pseudoinverse to solve the instantaneous relationship between the joint and end-effector velocities. This paper establishes some new goals for redundancy resolution at position level by using configuration control approach which has been recently developed. Minimum gravity loading, joint limit avoidance, minimum sensitivity, maximum stiffness and minimum impulse are introduced as redundancy resolution goals. These new goals for redundancy resolution allow more efficient utilizations of the redundant joints based on the desired task requirements. Simple computer simulation examples are given for illustration.

  • PDF

Motion Planning Algorithms for Kinematically Redundant Manipulator Not Fixed to the Ground (지면에 고정되어 있지 않은 여유자유도 매니플래이터의 운동계획 알고리즘)

  • 유동수;소병록;김희국
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.869-877
    • /
    • 2004
  • This paper deals with motion planning algorithm for kinematically redundant manipulators that are not fixed to the ground. Differently from usual redundant manipulators fixed to the ground, the stability issue should be taken into account to prevent the robot from falling down. The typical ZMP equation, which is employed in human walking, will be employed to evaluate the stability. This work proposes a feed forward ZMP planning algorithm. The algorithm embeds the 'ZMP equations' indirectly into the kinematics of the kinematic model of a manipulator via a ZMP stability index The kinematic self motion of the redundant manipulator drives the system in such a way to keep or plan the ZHP at the desired position of the footprint. A sequential redundancy resolution algorithm exploiting the remaining kinematic redundancy is also proposed to enhance the performances of joint limit index and manipulability. In addition, the case exerted by external forces is taken into account. Through simulation for a 5 DOF redundant robot model, feasibility of the proposed algorithms is verified. Lastly, usual applications of the proposed kinematic model are discussed.

A Control System of 4 d.o.f Human Arm type Redundant Robot (인간형 4자유도 로봇팔 제어 시스템)

  • Hwang, Sung-Ri;Park, Jae-woo;Na, Sang-min;Hyun, Woong-keun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.301-303
    • /
    • 2018
  • This paper describes a robot control system and control method of a human arm type redundant manipulator. The control of a redundant manipulator suffer from computational complexity and singularity problem because of numerical inverse kinematics. To deal with such problems, analytical methods for a redundant robot arm have been researched to enhance the performance of inverse kinematics. In this research, we propose a numerical control method and weighted pseudo inverse kinematics algorithm. Using this algorithm, it is possible to generate a trajectory passing through the singular points and intuitively move the elbow without regard to the end-effector pose. Performance of the proposed algorithm was verified by various simulations. It is shown that the trajectory planning and using this algorithm provides correct results near the singular points and can utilize redundancy intuitively. We proved this system's validity through field test.

  • PDF

Development of high performance universal contrller based on multiprocessor (다중처리기를 갖는 고성능 범용제어기의 개발과 여유자유도 로봇 제어에의 응용)

  • Park, J.Y.;Chang, P.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.227-235
    • /
    • 1993
  • In this paper, the development of a high performance flexible controller is described. The hardware of the controller, based on VME-bus, consists of four M68020 single-board computers (32-bit) with M68881 numerical coprocessors, two M68040 single board donputers, I/O devices (such as A/D and D/A converters, paraller I/O, encoder counters), and bus-to-bus adaptor. This software, written in C and based on X-window environment with Unix operating system, includes : text editor, compiler, downloader, and plotter running in a host computer for developing control program ; device drivers, scheduler, and mathemetical routines for the real time control purpose ; message passing, file server, source level debugger virtural terminal, etc. The hardware and software are structured so that the controller might have both flexibility and extensibility. In papallel to the controller, a three degrees of freedom kinematically redundant robot has been developed at the same time. The development of the same time. The development of the robot was undertaken in order to provide, on the one hand, a computationally intensive plant to which to apply the controller, and on the other hand a research tool in the field of kinematically redundant manipulator, which is, as such, an important area. By using the controller, dynamic control of the redundant manipulator was successfully experimented, showing the effectiveness and flexibility of the controller.

  • PDF

Joint Trajectory Planning for Cooperation of Two Redundant Robot Arms (두대의 영유자유도 로보트의 협력을 위한 관절궤적 결정)

  • 채영석;임준홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.10
    • /
    • pp.50-58
    • /
    • 1993
  • The problem of trajectory planning in two redundant robot systems is considered. The trajectory of each robot for the cooperative task is generated so that the robots assume their optimal configurations while following a given desired task. The cooperative task compatibility in and the weighted sum of manipulabilities are proposed and investigated as quality measures. The cooperative task compatibility includes the velocity and force transmission charateristics to the task requirements and so it measures the compatibilities of robot postures with respect to a given task. The weighted sum of manipuabilities of robot postures with respect to a given task. The weighted sum of manipulabilities is also considered as a quality measure since it is helpful to avoid singularities. The usefulness of the cooperative task compatibility and the weighted sum of manipulabilities are shown by computer simulation studies.

  • PDF

Optimal Configuration Control for a Mobile Manipulator

  • Kang, Jin-Gu;Jin, Tae-Seok;Kim, Min-Gyu;Lee, Jang-Myung
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.605-621
    • /
    • 2000
  • A mobile manipulator-a serial connection of a mobile platform and a task robot-is redundant by itself. Using its redundant freedom, a mobile manipulator can move in various modes, i. e., can perform dexterous tasks. In this paper, to improve task execution efficiency utilizing redundancy, optimal configurations of the mobile manipulator are maintained while it is moving to a new task point. Assuming that a task robot can perform the new task by itself, a desired configuration for the task robot can be pre-determined. Therefore, a cost function for optimality can be defined as a combination of the square errors of the desired and actual configurations of the mobile platform and of the task robot. In the combination of the two square errors, a newly defined mobility of a mobile platform is utilized as a weighting index. With the aid of the gradient method, the cost function is minimized, so the tasle that the mobile manipulator performs is optimized. The proposed algorithm is experimentally verified and discussed with a mobile manipulator, PURL-II.

  • PDF

Force Controller of the Redundant Manipulator using Seural Network (Redundant 매니퓰레이터의 force 제어를 위한 신경 회로망 제어기)

  • 이기응;조현찬;전홍태;이홍기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.13-17
    • /
    • 1990
  • In this paper we propose the force controller using a neural network for a redundant manipulator. Jacobian transpose matrix of a redundant manipulator constructed by a neural network is trained by using a feedback torque as an error signal. If the neural network is sufficiently trained well, the kinematic inaccuracy of a manipulator is automatically compensated. The effectiveness of the proposed controller is demonstrated by computer simulation using a three-link planar robot.

  • PDF

A Study on Posture Control Algorithm of Performing Consecutive Task for Mobile Manipulator (이동매니퓰레이터의 연속작업 수행을 위한 자세 제어 알고리즘에 관한 연구)

  • Kim, Jong-Iek;Rhyu, Kyeong-Taek;Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.3
    • /
    • pp.153-160
    • /
    • 2008
  • One of the most important features of the Mobile Manipulator is redundant freedom. Using it's redundant freedom, a Mobile Manipulator can move in various modes, and perform dexterous motions. In this paper, to improve robot job performance, two robots -mobile robot, task robot- are joined together to perform a job, we studied the optimal position and posture of a Mobile Manipulator to achieve a minimum of movement of each robot joint. Kinematics of mobile robot and task robot is solved. Using the mobility of a Mobile robot, the weight vector of robots is determined. Using the Gradient method, global motion trajectory is minimized, so the job which the Mobile Manipulator performs is optimized. The proposed algorithm is verified with PURL-II which is Mobile Manipulator combined Mobile robot and task robot, and the results are discussed.

  • PDF