• Title/Summary/Keyword: redundant robot

Search Result 145, Processing Time 0.017 seconds

이동 로봇의 강인 행동 계획 방법 (A Robust Behavior Planning technique for Mobile Robots)

  • 이상형;이상훈;서일홍
    • 로봇학회논문지
    • /
    • 제1권2호
    • /
    • pp.107-116
    • /
    • 2006
  • We propose a planning algorithm to automatically generate a robust behavior plan (RBP) with which mobile robots can achieve their task goal from any initial states under dynamically changing environments. For this, task description space (TDS) is formulated, where a redundant task configuration space and simulation model of physical space are employed. Successful task episodes are collected, where $A^*$ algorithm is employed. Interesting TDS state vectors are extracted, where occurrence frequency is used. Clusters of TDS state vectors are found by using state transition tuples and features of state transition tuples. From these operations, characteristics of successfully performed tasks by a simulator are abstracted and generalized. Then, a robust behavior plan is constructed as an ordered tree structure, where nodes of the tree are represented by attentive TDS state vector of each cluster. The validity of our method is tested by real robot's experimentation for a box-pushing-into-a-goal task.

  • PDF

제약 전파 기법을 적용한 다중 이동 로봇의 상호 협동 위치 추정 (Cooperative Localization for Multiple Mobile Robots using Constraints Propagation Techniques on Intervals)

  • 조경환;장철수;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.273-283
    • /
    • 2008
  • This article describes a cooperative localization technique of multiple robots sharing position information of each robot. In case of conventional methods such as EKF, they need to linearization process. Consequently, they are not able to guarantee that their result is range containing true value. In this paper, we propose a method to merge the data of redundant sensors based on constraints propagation techniques on intervals. The proposed method has a merit guaranteeing true value. Especially, we apply the constraints propagation technique fusing wheel encoders, a gyro, and an inexpensive GPS receiver. In addition, we utilize the correlation between GPS data in common workspace to improve localization performance for multiple robots. Simulation results show that proposed method improve considerably localization performance of multiple robots.

신경 회로망을 사용한 역운동학 해 (A Solution to the Inverse Kinematic by Using Neural Network)

  • 안덕환;양태규;이상효
    • 한국통신학회논문지
    • /
    • 제15권4호
    • /
    • pp.295-300
    • /
    • 1990
  • 역 운동학 문제는 로보트 매니퓰레이터 제어에서 중요한 관점이 되어 왔다. 본 논문에서는 Jacobi 제어 기법을 실현하기 위하여 Hopfield, Tank의 신경회로망 모델을 사용하였다. 뉴런의 상태는 매니퓰레이터의 관절 속도를 나타내고, 연결강도는 Jacobi 행렬의 값으로 결정되어 진다. 회로망의 에너지 함수는 실제 관절 속도와 원하는 관절 속도간의 최소 자승 오차와 대응하도록 구성한다. 매 샘플링에서 연결 강도와 뉴런의 상태는 현재의 관절위치값에 따라서 변한다. 여유 자유도를 가지는 평면 매니퓰레이터에 대한 역 운동학 해를 컴퓨터 시뮬레이션을 통하여 구하였다.

  • PDF

6자유도 호버링 AUV의 설계 및 제어 (Design and Control of 6 D.O.F(Degrees of Freedom) Hovering AUV)

  • 정상기;최형식;서정민;;김준영
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.797-804
    • /
    • 2013
  • In this paper, a study of a new hovering six dof underwater robot with redundant horizontal thrusters, titled HAUV (hovering AUV), is presented. The results of study on the structure design, deployment of thrusters, and development of the developed control system of the AUV was presented. For the HAUV structure, a structure design and an analysis of the thrusting system was performed. For navigation, a sensor fusion board which can proceed various sensor signals to identify correct positions and speeds was developed and a total control system including EKF (Extended Kalman Filter) was designed. Rolling, pitching and depth control tests of the HAUV have been performed, and relatively small angle error and depth tracking error results were shown.

복수의 수중 소나를 활용한 수중 로봇의 3차원 지형 맵핑에 관한 연구 (Study on Seabed Mapping using Two Sonar Devices for AUV Application)

  • 조한길;유선철
    • 로봇학회논문지
    • /
    • 제16권2호
    • /
    • pp.94-102
    • /
    • 2021
  • This study addresses a method for 3D reconstruction using acoustic data with heterogeneous sonar devices: Forward-Looking Multibeam Sonar (FLMS) and Profiling Sonar (PS). The challenges in sonar image processing are perceptual ambiguity, the loss of elevation information, and low signal to noise ratio, which are caused by the ranging and intensity-based image generation mechanism of sonars. The conventional approaches utilize additional constraints such as Lambertian reflection and redundant data at various positions, but they are vulnerable to environmental conditions. Our approach is to use two sonars that have a complementary data type. Typically, the sonars provide reliable information in the horizontal but, the loss of elevation information degrades the quality of data in the vertical. To overcome the characteristic of sonar devices, we adopt the crossed installation in such a way that the PS is laid down on its side and mounted on the top of FLMS. From the installation, FLMS scans horizontal information and PS obtains a vertical profile of the front area of AUV. For the fusion of the two sonar data, we propose the probabilistic approach. A likelihood map using geometric constraints between two sonar devices is built and a monte-carlo experiment using a derived model is conducted to extract 3D points. To verify the proposed method, we conducted a simulation and field test. As a result, a consistent seabed map was obtained. This method can be utilized for 3D seabed mapping with an AUV.