• Title/Summary/Keyword: redundancy bits

Search Result 35, Processing Time 0.023 seconds

Multiple Node Flip Fast-SSC Decoding Algorithm for Polar Codes Based on Node Reliability

  • Rui, Guo;Pei, Yang;Na, Ying;Lixin, Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.658-675
    • /
    • 2022
  • This paper presents a fast-simplified successive cancellation (SC) flipping (Fast-SSC-Flip) decoding algorithm for polar code. Firstly, by researching the probability distribution of the number of error bits in a node caused by channel noise in simplified-SC (SSC) decoder, a measurement criterion of node reliability is proposed. Under the guidance of the criterion, the most unreliable nodes are firstly located, then the unreliable bits are selected for flipping, so as to realize Fast-SSC-Flip decoding algorithm based on node reliability (NR-Fast-SSC-Flip). Secondly, we extended the proposed NR-Fast-SSC-Flip to multiple node (NR-Fast-SSC-Flip-ω) by considering dynamic update to measure node reliability, where ω is the order of flip-nodes set. The extended algorithm can correct the error bits in multiple nodes, and get good performance at medium and high signal-to-noise (SNR) region. Simulation results show that the proposed NR-Fast-SSC-Flip decoder can obtain 0.27dB and 0.17dB gains, respectively, compared with the traditional Fast-SSC-Flip [14] and the newly proposed two-bit-flipping Fast-SSC (Fast-SSC-2Flip-E2) [18] under the same conditions. Compared with the newly proposed partitioned Fast-SSC-Flip (PA-Fast-SSC-Flip) (s=4) [18], the proposed NR-Fast-SSC-Flip-ω (ω=2) decoder can obtain about 0.21dB gain, and the FER performance exceeds the cyclic-redundancy-check (CRC) aided SC-list (CRC-SCL) decoder (L=4).

Removal of Complexity Management in H.263 Codec for A/VDelivery Systems

  • Jalal, Ahmad;Kim, Sang-Wook
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.931-936
    • /
    • 2006
  • This paper presents different issues of the real-time compression algorithms without compromising the video quality in the distributed environment. The theme of this research is to manage the critical processing stages (speed, information lost, redundancy, distortion) having better encoded ratio, without the fluctuation of quantization scale by using IP configuration. In this paper, different techniques such as distortion measure with searching method cover the block phenomenon with motion estimation process while passing technique and floating measurement is configured by discrete cosine transform (DCT) to reduce computational complexity which is implemented in this video codec. While delay of bits in encoded buffer side especially in real-time state is being controlled to produce the video with high quality and maintenance a low buffering delay. Our results show the performance accuracy gain with better achievement in all the above processes in an encouraging mode.

  • PDF

A study on the Image Signal Compress using SOM with Isometry (Isometry가 적용된 SOM을 이용한 영상 신호 압축에 관한 연구)

  • Chang, Hae-Ju;Kim, Sang-Hee;Park, Won-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.358-360
    • /
    • 2004
  • The digital images contain a significant amount of redundancy and require a large amount of data for their storage and transmission. Therefore, the image compression is necessary to treat digital images efficiently. The goal of image compression is to reduce the number of bits required for their representation. The image compression can reduce the size of image data using contractive mapping of original image. Among the compression methods, the mapping is affine transformation to find the block(called range block) which is the most similar to the original image. In this paper, we applied the neural network(SOM) in encoding. In order to improve the performance of image compression, we intend to reduce the similarities and unnecesaries comparing with the originals in the codebook. In standard image coding, the affine transform is performed with eight isometries that used to approximate domain blocks to range blocks.

  • PDF

Adaptive coding algorithm using quantizer vector codebook in HDTV (양자화기 벡터 코드북을 이용한 HDTV 영상 적응 부호화)

  • 김익환;최진수;박광춘;박길흠;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.10
    • /
    • pp.130-139
    • /
    • 1994
  • Video compression algorithms are based on removing spatial and/or temproal redundancy inherent in image sequences by predictive(DPCM) encoding, transform encoding, or a combination of predictive and transform encoding. In this paper, each 8$\times$8 DCT coefficient of DFD(displaced frame difference) is adaptively quantized by one of the four quantizers depending on total distortion level, which is determined by characteristics of HVS(human visual system) and buffer status. Therefore, the number of possible quantizer selection vectors(patterns) is 4$^{64}$. If this vectors are coded, toomany bits are required. Thus, the quantizer selection vectors are limited to 2048 for Y and 512 for each U, V by the proposed method using SWAD(sum of weighted absolute difference) for discriminating vectors. The computer simulation results, using the codebook vectors which are made by the proposed method, show that the subjective and objective image quality (PSNR) are goor with the limited bit allocation. (17Mbps)

  • PDF

A Study on the Advanced RFID System in Railway using the Parallel CRC Technique (철도에서 병렬 순환 잉여 기법을 이용한 차세대 무선인식 시스템에 관한 연구)

  • Kang Tai-Kyu;Lee Jae-Ho;Shin Seok-Kyun;Lee Jae-Hoon;Lee Key-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • This paper has presented the parallel cyclic redundancy check (CRC) technique that performs CRC computation in parallel superior to the conventional CRC technique that processes data bits serially. Also, it has showed that the implemented parallel CRC circuit has been successfully applied to the inductively coupled passive RFTD system working at a frequency of 13.56㎒ in order to process the detection of logical faults more fast and the system has been verified experimentally. In comparison with previous works, the proposed RFID system using the parallel CRC technique has been shown to reduce the latency and increase the data processing rates about 15% In the results. Therefore, it seems reasonable to conclude that the parallel CRC realization in the RFID system offers a means of maintaining the integrity of data in the high speed RFID system.

A Fault Detection and Self-Recovery System for Space-Borne Dual Ring Counters (우주용 중복구조 링 카운터를 위한 고장 진단 및 자가 복구 시스템)

  • Kwak, Seong Woo;Yang, Jung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.120-126
    • /
    • 2013
  • This paper proposes a novel scheme of fault detection and self-recovery for space-borne dual ring counters subject to transient faults. The considered ring counter is equipped with hardware redundancy, but it has a limited output domain where direct access to the current state is unavailable. We employ the theory of corrective control to detect any transient fault occurring to the counter bits and to realize immediate self-recovery of the ring counter back to the normal state. The structure of the fault-tolerant controller is designed to be minimal regardless of the counter size. To validate the applicability, we implement the proposed system on a commercial FGPA board.

USEFUL REDUNDANT TECHNIQUES FOR BUILT -IN -TEST RELATED SYSTEM

  • Yoo, Wang-Jin;Oh, Hyun-Seung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.2
    • /
    • pp.183-194
    • /
    • 1995
  • This research paper describes several possible suggestions which are essential to develop for Built-In-Test(BIT) related systems, such as more precise BIT parameter analysis, sensitivity analysis of the impact of BIT on redundant systems, statistical inference of field data for BIT performance parameters, methods of reducing BIT false alarms, BIT application in industrial automation and remote control, prevent the system from the impact of BIT failure, undetections and false alarms, life cycle cost analysis for BIT. And, it is mainly focused on redundancy technique for solving BIT diagnostic problems. Algorithms for redundant systems : overlapping technique, flexible redundant BITs are presented and case study will be shown based on various experiment.

  • PDF

Energy and Statistical Filtering for a Robust Audio Fingerprinting System (강인한 오디오 핑거프린팅 시스템을 위한 에너지와 통계적 필터링)

  • Jeong, Byeong-Jun;Kim, Dae-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.5
    • /
    • pp.1-9
    • /
    • 2012
  • The popularity of digital music and smart phones led to develope noise-robust real-time audio fingerprinting system in various ways. In particular, The Multiple Hashing(MLH) of fingerprint algorithms is robust to noise and has an elaborate structure. In this paper, we propose a filter engine based on MLH to achieve better performance. In this approach, we compose a energy-intensive filter to improve the accuracy of Q/R from music database and a statistic filter to remove continuity and redundancy. The energy-intensive filter uses the Discrite Cosine Transform(DCT)'s feature gathering energy to low-order bits and the statistic filters use the correlation between searched fingerprint's information. Experimental results show that the superiority of proposed algorithm consists of the energy and statistical filtering in noise environment. It is found that the proposed filter engine achieves more robust to noise than Philips Robust Hash(PRH), and a more compact way than MLH.

Efficient Motion Information Representation in Splitting Region of HEVC (HEVC의 분할 영역에서 효율적인 움직임 정보 표현)

  • Lee, Dong-Shik;Kim, Young-Mo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.485-491
    • /
    • 2012
  • This paper proposes 'Coding Unit Tree' based on quadtree efficiently with motion vector to represent splitting information of a Coding Unit (CU) in HEVC. The new international video coding, High Efficiency Video Coding (HEVC), adopts various techniques and new unit concept: CU, Prediction Unit (PU), and Transform Unit (TU). The basic coding unit, CU is larger than macroblock of H.264/AVC and it splits to process image-based quadtree with a hierarchical structure. However, in case that there are complex motions in CU, the more signaling bits with motion information need to be transmitted. This structure provides a flexibility and a base for a optimization, but there are overhead about splitting information. This paper analyzes those signals and proposes a new algorithm which removes those redundancy. The proposed algorithm utilizes a type code, a dominant value, and residue values at a node in quadtree to remove the addition bits. Type code represents a structure of an image tree and the two values represent a node value. The results show that the proposed algorithm gains 13.6% bit-rate reduction over the HM-1.0.

A 1.8 V 40-MS/sec 10-bit 0.18-㎛ CMOS Pipelined ADC using a Bootstrapped Switch with Constant Resistance

  • Eo, Ji-Hun;Kim, Sang-Hun;Kim, Mun-Gyu;Jang, Young-Chan
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.85-90
    • /
    • 2012
  • A 40-MS/sec 10-bit pipelined analog to digital converter (ADC) with a 1.2 Vpp differential input signal is proposed. The implemented pipelined ADC consists of eight stages of 1.5 bit/stage, one stage of 2 bit/stage, a digital error correction block, band-gap reference circuit & reference driver, and clock generator. The 1.5 bit/stage consists of a sub-ADC, digital to analog (DAC), and gain stage, and the 2.0 bit/stage consists of only a 2-bit sub-ADC. A bootstrapped switch with a constant resistance is proposed to improve the linearity of the input switch. It reduces the maximum VGS variation of the conventional bootstrapped switch by 67%. The proposed bootstrapped switch is used in the first 1.5 bit/stage instead of a sample-hold amplifier (SHA). This results in the reduction of the hardware and power consumption. It also increases the input bandwidth and dynamic performance. A reference voltage for the ADC is driven by using an on-chip reference driver without an external reference. A digital error correction with a redundancy is also used to compensate for analog noise such as an input offset voltage of a comparator and a gain error of a gain stage. The proposed pipelined ADC is implemented by using a 0.18-${\mu}m$ 1- poly 5-metal CMOS process with a 1.8 V supply. The total area including a power decoupling capacitor and the power consumption are 0.95 $mm^2$ and 51.5 mW, respectively. The signal-to-noise and distortion ratio (SNDR) is 56.15 dB at the Nyquist frequency, resulting in an effective number of bits (ENOB) of 9.03 bits.