• 제목/요약/키워드: reduction of axial force

검색결과 84건 처리시간 0.029초

궤도-교량 상호작용 해석에 의한 슬라이딩 슬래브 궤도의 장대레일 응력 저감 효과 분석 (Evaluation of Stress Reduction of Continuous Welded Rail of Sliding Slab Track from Track-Bridge Interaction Analysis)

  • 이경찬;장승엽;정동기;변형균
    • 대한토목학회논문집
    • /
    • 제35권5호
    • /
    • pp.1179-1189
    • /
    • 2015
  • 장대레일을 적용한 교량상 콘크리트 궤도는 온도하중 및 시제동 하중에 의하여 종방향 상호작용력이 크게 발생하며, 이를 해소하기 위하여 활동체결장치 또는 저체결력 체결장치와 같은 특수체결장치를 적용하거나 레일신축이음장치를 설치하여야 한다. 슬라이딩 슬래브 궤도는 교량과 궤도 슬래브 사이에 슬라이드층을 두어 상호작용을 저감시킬 수 있는 것으로 알려져 있다. 이 연구에서는 슬라이딩 궤도와 일반 콘크리트 궤도를 적용한 교량에 대하여 상호작용 해석 결과를 제공한다. 해석 결과 슬라이딩 궤도를 적용함으로써 장대레일에 발생하는 부가 축력을 현저히 저감시킬 수 있는 것으로 밝혀졌으며, 그 차이는 장경간 및 연속교에서 더욱 큰 것으로 나타났다.

Size-dependent dynamic stability of a FG polymer microbeam reinforced by graphene oxides

  • Wang, Yuewu;Xie, Ke;Fu, Tairan
    • Structural Engineering and Mechanics
    • /
    • 제73권6호
    • /
    • pp.685-698
    • /
    • 2020
  • The dynamic stability of a functionally graded polymer microbeam reinforced by graphene oxides subjected to a periodic axial force is investigated. The microbeam is assumed to rest on an elastic substrate and is subjected to various immovable boundary restraints. The weight fraction of graphene oxides nanofillers is graded across the beam thickness. The effective Young's modulus of the functionally graded graphene oxides reinforced composite (FG-GORC) was determined using modified Halpin-Tsai model, with the mixture rule used to evaluate the effective Poisson's ratio and the mass density. An improved third order shear deformation theory (TSDT) is used in conjunction with the Chebyshev polynomial-based Ritz method to derive the Mathieu-Hill equations for dynamic stability of the FG-GORC microbeam, in which the scale effect is taken into account based on modified couple stress theory. Then, the Mathieu-Hill equation was solved using Bolotin's method to predict the principle unstable regions of the FG-GORC microbeams. The numerical results show the effects of the small scale, the graphene oxides nanofillers as well as the elastic substrate on the dynamic stability behaviors of the FG-GORC microbeams.

Study on a seismic slit shear wall with cyclic experiment and macro-model analysis

  • Jiang, Huanjun;Lu, Xilin;Kwan, A.K.H.;Cheung, Y.K.
    • Structural Engineering and Mechanics
    • /
    • 제16권4호
    • /
    • pp.371-390
    • /
    • 2003
  • The concept of the seismic slit shear wall was proposed in the early 1990's. A series of experimental and theoretic studies on the wall with reinforced concrete short connecting beams cast in the slit were carried out. In this paper another type of slit shear wall is studied. It is one with vertical slit purposely cast within the wall, and the rubber belt penetrated by a part of web shear reinforcement as seismic energy-dissipation device is filled in the slit. Firstly, an experiment under cyclic loading was carried out on two shear wall models, one slit and the other solid. The failure mechanism and energy-dissipation capacity are compared between the two different models, which testifies the seismic performance of the slit wall improved significantly. Secondly, for engineering practice purpose, a macroscopic analytical model is developed to predict the nonlinear behavior of the slit shear wall under cyclic loading. The mechanical properties of each constituent elements of this model are based on the actual behavior of the materials. Furthermore, the effects of both the axial force and bending moment on the shear behavior are taken into account with the aid of the modified compression-field theory. The numerical results are verified to be in close agreement with the experimental measurements.

전면벽체의 강성이 Soil Nailing 시스템의 전체안정성에 미치는 영향 (Influence of Facing Stiffness on Global Stability. of Soil Nailing Systems)

  • 김홍택;권영호;강인규;박사원;강윤
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.427-434
    • /
    • 2002
  • In Korea, there are recently many attempts to expand a temporary soil nailing system into a permanent soil nailing system since the first construction in 1993. In the downtown area, it is important that the relaxation of the ground is minimized in the ground excavation works. Due to these problems, soil nailing systems are often used the flexible facing such as shotcrete rather than the rigid facing such as SCW, CIP, and jet grout types in Korea. The soil nailing systems with rigid facings are used greatly however it is insufficient researches for design and analysis of soil nailing systems with rigid facings. In this study, various laboratory model tests are carried out to examining the influence the rigidity of facings on the global safety of soil nailing system, failure loads, displacement behaviour, axial force acting on the nails, and distribution of earth pressure. Also, the parametric studies are carried out for the typical section of soil nailed walls according to thickness of concrete facings and internal friction angle of soil using the numerical technique as shear strength reduction technique.

  • PDF

An applied model for steel reinforced concrete columns

  • Lu, Xilin;Zhou, Ying
    • Structural Engineering and Mechanics
    • /
    • 제27권6호
    • /
    • pp.697-711
    • /
    • 2007
  • Though extensive research has been carried out for the ultimate strength of steel reinforced concrete (SRC) members under static and cyclic load, there was only limited information on the applied analysis models. Modeling of the inelastic response of SRC members can be accomplished by using a microcosmic model. However, generally used microcosmic model, which usually contains a group of parameters, is too complicated to apply in the nonlinear structural computation for large whole buildings. The intent of this paper is to develop an effective modeling approach for the reliable prediction of the inelastic response of SRC columns. Firstly, five SRC columns were tested under cyclic static load and constant axial force. Based on the experimental results, normalized trilinear skeleton curves were then put forward. Theoretical equation of normalizing point (ultimate strength point) was built up according to the load-bearing mechanism of RC columns and verified by the 5 specimens in this test and 14 SRC columns from parallel tests. Since no obvious strength deterioration and pinch effect were observed from the load-displacement curve, hysteresis rule considering only stiffness degradation was proposed through regression analysis. Compared with the experimental results, the applied analysis model is so reasonable to capture the overall cyclic response of SRC columns that it can be easily used in both static and dynamic analysis of the whole SRC structural systems.

단위부재 모델화에 따른 단층 래티스 돔의 탄소성 좌골하중의 산정에 관한 연구 (A Study on the Estimation of Elasto-Plastic Buckling Loads for Sing1e Layer Latticed Domes by Unit Member Modeling Technique.)

  • 한상을;이상주;유용주;이경수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.290-297
    • /
    • 1998
  • In this paper, we propose to a method to estimate the elasto-plastic buckling for single layer latticed domes. First, we assume that each member consists of the rigid zone and elastic spring at both end joint, the elastic element and three elasto-plastic spring to judge for yeilding the member. Next, the member which has most influence on buckling for structures is determined by a distributed pattern of the strain energy which is calculated through linear eigenvalue analysis. And then, normalized slenderness ratio of the element is derived considering the axial force at elastic buckling load. Later, we execute elasto-plastic nonlinear analysis that based on loading increasement method and displacement increasement method. From this results, we discusses the effect of the joint rigidity and the half open angle $\theta$$_{0}$ on the buckling strength of single layer lattice domes ; (1) how the joint rigidity contributes to the reduction of buckling loads, (2) how the reduction can be interrelated to compressive strength curves in terms of the generalized slenderness for the member most relevant to the overall buckling of domes.s.

  • PDF

100,000 RPM급으로 회전하는 에어공구의 성능측정에 관한 연구 (Study on Measuring the Performance of an Air Tool Operating at 100,000 RPM Class)

  • 조수용;김은종
    • 한국유체기계학회 논문집
    • /
    • 제6권3호
    • /
    • pp.44-50
    • /
    • 2003
  • An experiment is conducted for measuring the performance of an air tool, which is operated at 100,000 RPM in an unloaded state with very low torque. A 551 kPa in gauge pressure is supply to the inlet of an air tool. An experimental apparatus is developed as a friction type dynamometer. Inlet total pressure, air flow rate, rotational speed and operating force are measured simultaneously. Torque, output power and specific output power are obtained with different rotational speeds. Those are compared with the experimental results which were obtained by a commercial dynamometer. However, no commercial dynamometers are available for measuring the torque above 30,000 RPM. In order to reduce the rotational speed, a reduction gear is applied between the air tool and the commercial dynamometer. Torque and power obtained by the commercial dynamometer show $55\%$ lower than those obtained by the developed friction type dynamometer, because the mass is added to the rotor of air tool for the braking system of the commercial dynamometer and power loss is generated by the reduction gear. From the compared results, the friction type dynamometer should be applied for measuring the performance of the air tool operating at low torque and high RPM.

위상간섭을 이용한 사축식 액셜 피스톤 펌프의 압력 맥동 감소 (A Reduction in Pressure Ripples of Axial Piston Pumps of Bent Axis by Phase Interface)

  • 김경훈;박경석;장주섭;김봉환;이규원;손권;신민호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1261-1265
    • /
    • 2003
  • Axial piston pumps of bent axis have been commonly used in hydraulic systems because of high pressure level. best efficiency, low shear force on pistons and low operating costs. The other side, they have a few demerits like that they have the relatively high number of moving parts and more discharge pressure ripples. Especially, the discharge pressure ripples bring about vibrations and noises in hydraulic system components such as connecting pipes and control valves, so that these deteriorate the stability and accuracy of the systems. Therefore, the hydraulic systems having the axial piston pumps of bent axis require the methods to reduce the discharge pressure ripples. So, the purpose of this paper is to reduce the discharge pressure ripples by the phase interference of pressure wave and to develope the analysis model of the pumps to predict the discharge pressure ripples. In this paper, the analysis model of the axial piston pumps of bent axis was developed using the AMESim software, and the reliability of that was verified by the comparison with the experimental results. The hydraulic pipeline with a parallel line was used as the method to generate the phase interference of pressure wave. the dynamics characteristics of the hydraulic pipeline with a parallel line were analyzed by a transfer matrix method. the usefulness of the phase interference of pressure wave was investigated through the experiment and simulation. The results from the experiment and simulation said that the phase interference of pressure wave by the hydraulic pipeline with a paralle linel could reduce the discharge pressure wave of the pump well. The analysis model of the axial piston pumps of bent axis developed in this paper and the method of the phase interference by the hydraulic pipeline with a parallel line are expected to be helpful to achieve the design of the pump and to reduce the discharge pressure wave of the pump effectively.

  • PDF

Flexural behavior of beams in steel plate shear walls

  • Qin, Ying;Lu, Jin-Yu;Huang, Li-Cheng-Xi;Cao, Shi
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.473-481
    • /
    • 2017
  • Steel plate shear wall (SPSW) system has been increasingly used for lateral loads resisting system since 1980s when the utilization of post-buckling strength of SPSW was realized. The structural response of SPSWs largely depends on the behavior of the surrounded beams. The beams are normally required to behave in the elastic region when the SPSW fully buckled and formed the tension field action. However, most modern design codes do not specify how this requirement can be achieved. This paper presents theoretical investigation and design procedures of manually calculating the plastic flexural capacity of the beams of SPSWs and can be considered as an extension to the previous work by Qu and Bruneau (2011). The reduction in the plastic flexural capacity of beam was considered to account for the presence of shear stress that was altered towards flanges at the boundary region, which can be explained by Saint-Venant's principle. The reduction in beam web was introduced and modified based on the research by Qu and Bruneau (2011), while the shear stress in the web in this research is excluded due to the boundary effect. The plastic flexural capacity of the beams is given by the superposition of the contributions from the flanges and the web. The developed equations are capable of predicting the plastic moment of the beams subjected to combined shear force, axial force, bending moment, and tension fields induced by yielded infill panels. Good agreement was found between the theoretical results and the data from previous research for flexural capacity of beams.

고장력볼트 마찰이음의 합리적 설계 및 시공에 관한 연구 (A Study on Rational Design and Construction of High-Tension-Bolt Friction Joints)

  • 이승용;경갑수
    • 대한토목학회논문집
    • /
    • 제26권3A호
    • /
    • pp.513-521
    • /
    • 2006
  • 최근에는 고장력볼트 마찰이음의 다양화에 대해서 실무적 관점에서부터 각종 실험적 연구가 실시되고 있지만, 이러한 연구 결과가 시방기준의 개정에 반영된 것은 거의 없는 실정이다. 특히 강교량에 있어서는 최근 합리화의 추진이 강하게 대두되고 있으며, 이에 따라 강교의 설계 및 시공상 가장 중요한 부분의 하나인 고장력볼트 이음부의 합리화의 필요성이 커지고 있다. 따라서 본 연구는 고장력볼트 이음부의 설계 및 시공의 합리화를 위한 방향을 제시하고, 설계기준으로의 반영을 위한 기초자료를 제시하기 위하여 고장력볼트 이음부에 관한 국내외의 설계기준을 비교, 검토하여 설계에서 가장 중요한 인자인 미끄러짐 계수, 그리고 볼트 구멍의 크기에 대한 규정을 분석하였다. 한편 과대공 및 축력감소의 영향을 평가하기 위하여 고장력볼트 연결부에 대한 미끄러짐 시험을 실시하여 미끄러짐 거동을 평가하였다. 또한 최근에 수행된 고장력볼트 마찰이음에 관한 연구결과를 토대로 접촉면의 상태에 따른 미끄러짐 계수의 차이, 과대공의 영향, 채움판의 적용, 모재 틈새간격의 영향, 방청볼트의 사용성 등을 평가하였다. 이로부터 미끄러짐 계수의 경우 국내의 시방기준에서는 접촉면의 처리상태에 따라 일률적으로 적용되고 있는데 비하여 외국의 시방기준에서는 접촉면의 처리상태에 따라 세분화하여 규정하고 있다. 따라서 국내의 시방기준에도 접촉면의 처리상태에 따라 미끄러짐 계수를 세분하여 규정하여 설계의 합리화를 추진할 필요가 있을 것으로 판단된다. 또한 외국의 시방기준에서 적용하는 정도의 과대공을 설계에 반영하면 시공의 효율성을 증대시킬 수 있을 것으로 판단된다.