• Title/Summary/Keyword: reduction of ICRS

Search Result 3, Processing Time 0.015 seconds

A study on Seismic Retrofitting of the NPP Cabinets (원전 캐비넷 구조물의 동적보강효과에 관한 연구)

  • 이계희;김재민;정연석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.374-381
    • /
    • 2003
  • In this study, the reduction schemes of ICRS(In-Cabinet Response Spectra), the main part of seismic safety qualification of old nuclear power plant(USI A-46 problem), are studied. To obtain accurate dynamic characteristics of cabinet structure, the cabinet structure modeled by frame model and its eigen analysis is performed. The three types of seismic retrofitting scenarios, such as 1) the installation of bracing, 2) installation of damper, 3) installation of tuned mass damper(TMD), are established and evaluated for the decreasing of ICRS. In the cases of 1) & 2), since, the retrofitted structures show larger ICRS than that of original structure, the careful considerations are need in the application of these methods. Though, the case of TMD show the best retrofitting result, the tuning between the real structure and analysis model is estimated the essential step of retrofitting.

  • PDF

Seismic Retrofitting of Cabinet Structures in Nuclear Power Plant (원자력 발전소 캐비닛구조물의 내진보강)

  • 이계희;김재민;김상윤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.31-37
    • /
    • 2003
  • This paper presents the methodologies for seismic retrofitting of cabinet equipment which can be employed to resolve the USI A-46 problem related to seismic qualification of old nuclear power plant. To obtain accurate dynamic characteristics of a cabinet structure, three types of structural modeling are introduced and the their free vibration modes are compared. Three types of seismic retrofitting scenarios, such as 1) the installation of bracing, 2) installation of damper, 3) installation of tuned mass damper(TMD), are established and evaluated for the decrease of ICRS(In Cabinet Reponse Spectrum). In the cases of 1) & 2), since the retrofitted structures show larger ICRS than that of the original structure, the careful considerations are need in the application of these methods. Though the installation of TMD shows the best retrofitting result, the construction of analysis model that indicate the accurate vibration modes of real structure is estimated the essential step of this retrofitting method.

Seismic demand estimation of electrical cabinet in nuclear power plant considering equipment-anchor-interaction

  • Cho, Sung Gook;Salman, Kashif
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1382-1393
    • /
    • 2022
  • This paper investigates the seismic behavior of an electrical cabinet considering the influence of equipment-anchor-interaction (EAI) that is generally not taken into consideration in a decoupled analysis. The hysteresis behavior of an anchor bolt in concrete was thereby considered to highlight this interaction effect. To this end, the experimental behavior of an anchor bolt under reversed cyclic loading was taken from the recently developed literature, and a numerical model for the anchor hysteresis was developed using the component approach. The hysteresis properties were then used to calibrate the multi-linear link element that is implemented as a boundary condition for the cabinet incorporating the EAI. To highlight this EAI further, the nonlinear time history analysis was performed for a cabinet considering the hysteresis behavior comparative to a fixed boundary condition. Additionally, the influence on the seismic fragility was evaluated for the operational and structural condition of the cabinet. The numerical analysis considering the anchor hysteresis manifests that the in-cabinet response spectra (ICRS) are significantly amplified with the corresponding reduction in the seismic capacity of 25% and 15% for an operational and structural safety condition under the selected protocols. Considering the fixed boundary condition over a realistic hysteresis behavior of the anchor bolt is more likely to overestimate the seismic capacity of the cabinet in a seismic qualification procedure.