• Title/Summary/Keyword: reducing gases

Search Result 225, Processing Time 0.031 seconds

Strategies for reducing noxious gas emissions in pig production: a comprehensive review on the role of feed additives

  • Md Mortuza Hossain;Sung Bo Cho;In Ho Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.237-250
    • /
    • 2024
  • The emission of noxious gases is a significant problem in pig production, as it can lead to poor production, welfare concerns, and environmental pollution. The noxious gases are the gasses emitted from the pig manure that contribute to air pollution. The increased concentration of various harmful gasses can pose health risks to both animals and humans. The major gases produced in the pig farm include methane, hydrogen sulfide, carbon dioxide, ammonia, sulfur dioxide and volatile fatty acids, which are mainly derived from the fermentation of undigested or poorly digested nutrients. Nowadays research has focused on more holistic approaches to obtain a healthy farm environment that helps animal production. The use of probiotics, prebiotics, dietary enzymes, and medicinal plants in animal diets has been explored as a means of reducing harmful gas emissions. This review paper focuses on the harmful gas emissions from pig farm, the mechanisms of gas production, and strategies for reducing these emissions. Additionally, various methods for reducing gas in pigs, including probiotic interventions; prebiotic interventions, dietary enzymes supplementation, and use of medicinal plants and organic acids are discussed. Overall, this paper provides a comprehensive review of the current state of knowledge on reducing noxious gas in pigs and offers valuable insights for pig producers, nutritionists, and researchers working in this area.

THE SCENARIOS OF GREENHOUSE GAS REDUCTION ON SEOUL NATIONAL UNIVERSITY

  • Sooyoung Kim;Hyun-Soo Lee;Moonseo Park;Kwon-Sik Song
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.213-218
    • /
    • 2013
  • To respond to global warming and climate change, Korean Government has implemented the GHG Target Management, which leads to a voluntary reduction in greenhouse gases from large businesses. Korean universities have put efforts on reducing GHG emissions and energy consumptions in the campuses, however, because of various activities and its characteristic of non-profit organization, establishing a long-term plan for reducing greenhouse gases is necessary. In this research, the Seoul National University's energy usage is analyzed and applicable technologies for reducing GHG emissions are extracted. Hence, three scenarios for performing the GHG Target Management are established. Proposed scenario is available for GHG Target Management and it would be expected to support decision- makings for reducing GHG emissions.

  • PDF

Optimum Design Method for Pressure-reducing System using High-pressure Gas (고압가스감압시스템 최적화 설계기법)

  • Chung, Yong-Gahp;Cho, Nam-Kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.748-751
    • /
    • 2010
  • To launch rocket on launch pad, propellants and gases are charged into the rocket by remote control system. Using pneumatic pressure-reducing regulators, kinds of gases with various pressure levels are supplied into launch pad. As most of operations for launching the vehicle are remotely controled in the launch control room, pressure pulsations due to rapidly gas supply at the upstream of regulators can make the required operating pressure range missed and cause damage to the regulators. In this paper, the optimum design methods of pressure regulators of pressure-reducing system on launch pad using high-pressure gases were investigated to solve the aforementioned problems and for stable gas supply to launch pad.

  • PDF

Development of High Sensitive Integrated Dual Sensor to Detect Harmful Exhaust Gas and Odor for the Automotive (악취분별능력을 가진 자동차용 고기능 듀얼타입 집적형 유해가스 유입차단센서 개발)

  • Chung, Wan-Young;Shim, Chang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.616-623
    • /
    • 2007
  • A dual micro gas sensor array was fabricated using nano sized $SnO_2$ thin films which had good sensitivities to CO and combustible gases, or $H_2S$ gas for air quality sensors in automobile. The already existed air quality sensor detects oxidizing gases and reducing gases, the air quality sensor(AQS), located near the fresh air inlet detected the harmful gases, the fresh air inlet door/ventilation flap was closed to reduce the amount of pollution entering the vehicle cabin through HVAC(heating, ventilating, and air conditioning) system. In this study, to make $SnO_2$ thin film AQS sensor, thin tin metal layer between 1000 and $2000{\AA}$ thick was oxidized between 600 and $800^{\circ}C$ by thermal oxidation. The gas sensing layers such as $SnO_2$, $SnO_2$(pt) and $SnO_2$(+CuO) were patterned by metal shadow mask for simple fabrication process on the silicon substrate. The micro gas sensors with $SnO_2$(+Pt) and $SnO_2$(CuO) showed good selectivity to CO gas among reducing gases and good sensitivity to $H_2S$ that is main component of bad odor, separately.

Responses of SnO2-based Sensors for Oxidizing Gases (산화성 가스에 대한 SnO2모물질 가스센서의 감지특성)

  • 정해원;박희숙;김종명;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.973-980
    • /
    • 2003
  • The effects of additives in n-type semiconducting SnO$_2$-based gas sensors on oxidizing gases were investigated. The resistivity of SnO$_2$ sensors decreased when exposed to reducing gases, which act as electronic donors. However, the resistivities of the SnO$_2$ sensors increased when exposed to oxidizing gases, which act as electronic accepters. The products formed from the reaction of oxidizing gases ever SnO$_2$-based powders were analyzed by gas chromatography as compared with those formed from the reaction of reducing gases of alcohols. The SnO$_2$ sensors doped with PdCl$_2$ or A1$_2$O$_3$ showed unique dual response patterns toward oxidizing gases of $CH_3$CN and $CH_3$NO$_2$ depending on the operating temperature. The combination of these two sensors along with proper pattern recognition technique could enhance the selectivity for the gases with electron-accepting groups.

Remodeling Techniques for Reducing Greenhouse Gases Emissions in Existing Buildings (기존 건축물의 온실가스 감축을 위한 리모델링 기술 개발)

  • Kwon, Chul-Hwan;Park, Jong-Sup
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • There are only 10 projects of the domestic greenhouse gas(GHG) emissions trading scheme in building sector (i.e., 1.5% of 652 registered projects) because the certified methodologies to reduce GHG emissions can not be applied to building sector. This study presents remodeling techniques to reduce GHG emissions in existing buildings. First of all, preconditions and related regulations were reviewed. And then, a pool of factors for GHG reduction are selected and evaluated with respect to factors for reducing energy consumption. This study also investigates the criteria and the decision making process for remodeling techniques to reduce GHG emissions. Finally, the remodeling techniques using the decision making process were grouped based on redundancy of each effect. If reducing methodologies for GHG offset program can be developed using the analyzed remodeling techniques in this study, registered projects in building sector would be increase.

Fabrication and Gas Sensing Characteristics of $MoO_3$ Thin Film Sensor ($MoO_3$ 박막센서 제조 및 가스감지특성)

  • Hwang, Jong-Taek;Jang, Gun-Eik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.826-829
    • /
    • 2002
  • $MoO_3$ thin films were deposited on electrode and heater screen-printed alumina substrates in en atmosphere by RF reactive sputtering. The deposition was performed at $300^{\circ}C$ with 350W of a forward power in an $Ar-O_2$ atmosphere. The working pressure was maintained at $3{\times}10^{-2}$mtorr and all deposited films were annealed at $500^{\circ}C$ for 5hours. The surface morphology of films was observed by using a SEM and crystalline phases were analyzed by XRD. The sensing properties were investigated in term of gas concentration under exposure of reducing gases such as $H_2$, $NH_3$ and CO.

  • PDF

Sensing Properties of $\alpha$-Fe$_2$O$_3$ Thin Film Gas Sensor to Reducing Gases ($\alpha$-Fe$_2$O$_3$ 박막 센서의 환원성 가스감지특성)

  • 이은태;장건익;이덕동
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.465-470
    • /
    • 1999
  • Sensing properties of $\alpha$-Fe2O3 thin film to reducing gases such as CHx and CO were systematically examined after deposition on Al2O3 substrate by PECVD(Plasma Enhanced Chemical Vapor Deposition)technique. Microstructure of deposited $\alpha$-Fe2O3 thin film showed the porous island structure. This specimen was annealed at 450, 550, $650^{\circ}C$ to enhance the gas sensing properties and investigated in terms of CO and C4H10 concentration from 500ppm to 3,000 ppm at operating temperature of 35$0^{\circ}C$ The gas sensitivity(%) to C4H10 measured at the operating temperature of 35$0^{\circ}C$ was 98.24 (highest sensitivity) 69.51 to CO and 2% to CH4 respectviely.

  • PDF

Application Methodology of Greenhouse Gases Emission Table for Various Types of Roads and Vehicles (도로기하구조 조건에 따른 차량별 온실가스 배출량 산정사례 적용연구 - 맑은 날씨를 기준으로 -)

  • Lee, Jonghak;Choi, Jaisung;Noh, Kwansub;Hu, Hyejung
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.23-31
    • /
    • 2016
  • PURPOSES : This study aimed to offer a greenhouse gases table to assist a road designer in calculating the greenhouse gases for a road environment when making a decision about an alternative road. METHODS : This study developed an operation mode table of greenhouse gases using the MOVES program. Similar factors for Korean vehicles and fuels are reflected in the MOVES program, which was made in the USA. Finally, a paired t-test was conducted to calculate the site data and MOVES data. Through these studies, a methodology was suggested for calculating carbon emissions based on various types of roads alignments. RESULTS : The site results for a passenger truck on the road were statistically significant when the vehicle speed was above 65 km/h. However, a future study will consider factors for various road alignments and vehicles. CONCLUSIONS : This study will contribute to the theoretical basis for reducing carbon emissions from roads by helping road designers make decisions about road alternatives in terms of the road environment.

Identification of Gas Mixture with the MEMS Sensor Arrays by a Pattern Recognition

  • Bum-Joon Kim;Jung-Sik Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.5
    • /
    • pp.235-241
    • /
    • 2024
  • Gas identification techniques using pattern recognition methods were developed from four micro-electronic gas sensors for noxious gas mixture analysis. The target gases for the air quality monitoring inside vehicles were two exhaust gases, carbon monoxide (CO) and nitrogen oxides (NOx), and two odor gases, ammonia (NH3) and formaldehyde (HCHO). Four MEMS gas sensors with sensing materials of Pd-SnO2 for CO, In2O3 for NOX, Ru-WO3 for NH3, and hybridized SnO2-ZnO material for HCHO were fabricated. In six binary mixed gas systems with oxidizing and reducing gases, the gas sensing behaviors and the sensor responses of these methods were examined for the discrimination of gas species. The gas sensitivity data was extracted and their patterns were determined using principal component analysis (PCA) techniques. The PCA plot results showed good separation among the mixed gas systems, suggesting that the gas mixture tests for noxious gases and their mixtures could be well classified and discriminated changes.