• Title/Summary/Keyword: reducing agent

Search Result 1,123, Processing Time 0.025 seconds

The Experimental study on setting shrinkage of polymer concrete with recycled PET (재활용 PET를 이용한 폴리머 콘크리트의 경화수축에 관한 실험적 연구)

  • 조병완;태기호;윤영한;박재욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.816-821
    • /
    • 2003
  • This paper deals with a reduction in the setting shrikage of polymer concrete using bentonite as shrinkage reducing agent. This study with polymer concrete using unsaturated polyester(UP) based on recycled PET waste was performed to verify the effect of various shrinkage reducing agent contents and the types of filler which are fly ash and $CaCo_3$. Setting stress induced by setting shrinkage was investigated in temrs of mechanical and chemical combination.

  • PDF

Drying Shrinkage of High-Fluidity Polymer-Modified Paste (고유동 폴리머 시멘트 페이스트의 건조수축)

  • Joo, Myung-Ki;Lee, Youn-Su;Yeon, Kyu-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.929-932
    • /
    • 2006
  • The effects of polymer-binder ratio, antifoamer content and shrinkage-reducing agent content on the setting time and drying shrinkage of high-fluidity polymer-modified pastes are examined. As a result, the setting time of the high-fluidity polymer-modified pastes tends to delayed with increasing polymer-binder ratio. Irrespective of the antifoamer content, the drying shrinkage of the high-fluidity polymer-modified pastes tend to decrease with increasing polymer-cement ratio and shrinkage-reducing agent content.

  • PDF

A Study on the Properties of Concrete Using Water Reducing Agent (감수제(減水劑)를 사용(使用)한 콘크리트의 제성질(諸性質)에 관(關)한 연구(硏究))

  • Kang, Sin Up;Kim, Seong Wan;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.1
    • /
    • pp.90-102
    • /
    • 1986
  • This study was performed to obtain the basic data which can be applied to the use of concretes. The data was based on the properties of concrectes depending upon water-cement ratios and addings to compare those of plain concrete. The results obtained were summarized as follows; 1. In case the proper quantity of water reducing agent was added, unit weight of water is decreased to 12.9% with WR-LG of water reducing set standarding agent and to 8.6% with HF-SP of high fluid agent and to 17.2% with AH-WR of water reducing set accelerating agent, respectively, as compared with plain concrete. With the increase of water reducing agent content unit weight of water was greatly decreased. 2. The adding rate of water reducing agent which produce maximum strength was 0.2% with WR-LG and 0.4% with HF-SP and AH-WR, respectively. The increasing rates of strengths were showed that WR-LG is 24.1% and that HF-SP is 41.8% and that AH-WR is 43.3%, respectively, as compared with plain concrete. 3. The correlations between compressive and tensile strength were highly significant as a straight line. the multiple regression equations of compressive and tensile strength were computed with the variables of curing age and addition of water reducing agent. They were highly significant. 4. In case the proper quantity of water reducing agent was added, the correlations between water-cement ratio and compressive strength were highly significant as a straight line. The increasing rates of strength were showed higher than the decreasing rates of water cement-ratio.

  • PDF

Effects of Shrinkage Reducing Agent (SRA) Type and Content on Mechanical Properties of Strain Hardening Cement Composite (SHCC) (수축저감제의 종류 및 혼입률에 따른 변형경화형 시멘트복합체의 역학적 특성)

  • Han, Seung-Ju;Jang, Seok-Joon;Khil, Bae-Su;Choi, Mu-Jin;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.41-48
    • /
    • 2016
  • This research investigates the effects of shrinkage reducing agent (SRA) on the mechanical behavior of strain-hardening cement composite (SHCC). SHCC material with specified compressive strength of 50 MPa was mixed and tested in this study. All SHCC mixes reinforced with volume fraction of 2.2% polyvinyl alcohol (PVA) fiber and test variables are type and dosage of shrinkage reducing agents. The shrinkage reducing materials used in this study are phase change material as the thermal stress reducing materials that have the ability to absorb or release the heat. The effect of SRA was examined based on the change in length caused by shrinkage and hardened mechanical properties, specially compressive, tensile and flexural behaviors, of SHCC material. It was noted that SRA reduces change in length caused by shrinkage at early age. SRA can also improve the tensile and flexural strengths and toughness of SHCC material used in this study.

Analysis of the Possibility of Rapid Quality Appraisal of Water-Reducing Agents Using the Liquid Densimeter and pH Meter (액체 밀도계 및 pH meter기를 이용한 감수제의 신속품질평가 가능성 분석)

  • Kim, Min-Sang;Hyun, Seong-Yong;Baek, Cheol;Jo, Man-Ki;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.210-211
    • /
    • 2017
  • According to KS F 2560, water-reducing agents used when mixing concrete are to undergo quality evaluation testing slump, air contents, setting time, etc., when delivered from the admixture factory to the ready mixed concrete site. Yet in actual acceptance testing this could be substituted by the score report of the admixture company, in which a possibility of low reliability lies. Therefore this study sought to analyze whether by artificially changing the solid content rate of lignin- and naphthalene-based water-reducing agents and using a liquid densimeter evaluate the quality of the admixture. The results showed that the Type B liquid densimeter was most appropriate and 50cc the most appropriate capacity for the mass cylinder. Also, judging from the changes in density and pH according to the changes in solid content rate, it concludes that a rapid appraisal of the quality of lignin- and naphthalene-based water-reducing agents would be possible using a Type B liquid densimeter.

  • PDF

Effect of Filter and Shrinkage Reducing Agent Influencing on Setting Shrinkage and Strength Properties of MMA-Modified Polymer Paste (충전재와 수축저감제가 MMA개질 폴리머 페이스트의 경화수축 및 강도특성에 미치는 영향)

  • Yeon, Kyu-Seok;Beck, Jong-Man;Jin, Xing-Qi;Lee, Chi-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.227-232
    • /
    • 2006
  • This article presents the results of experimental study that investigates the effect of filler and shrinkage reducing agent influencing on the strength properties of MMA-modified polymer paste that was produced to develop the surface-repair and coating materials of the concrete structures. Results show that the flexural and compressive strengths of the polymer paste increased 29 and 27%, respectively, when the aluminum hydroxide completely replaced the calcium carbonate as the filler Furthermore, when the shrinkage reducing agent was used 30%, both strengths decreased about 29% comparing to when the agent was not used. As in the cases of flexural and compressive strengths, the adhesive strength increased as the content of aluminum hydroxide as the filler increased, and it decreased as the content of shrinkage reducing agent increased. The adhesive strength with a dry concrete substrate turned out to be $30{\sim}40%$ higher than that with a wet concrete substrate.

Characterizations of Pt-SPE Electrocatalysts Prepared by an Impregnation-Reduction Method for Water Electrolysis (함침-환원법으로 제조된 수전해용 Pt-SPE 전극촉매의 특성)

  • Jang, Doo-Young;Jang, In-Young;Kweon, Oh-Hwan;Kim, Kyoung-Eon;Hwang, Gab-Jin;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.440-447
    • /
    • 2006
  • Solid polymer electrolyte(SPE) membrane with electrodes embedded on both faces offer unique possibilities for the electrochemical cells like water electrolyzer with fuel cell. The Nafion 117 membrane was used as the SPE, and $Pt(NH_3)_4Cl_2$ and $NaBH_4$ as the electrocatalysts and reducing agent, respectively. The 'impregnation-reduction(I-R) method' has been investigated as a tool for the preparation of electrocatalysts for water electrolyzer by varying the concentration of reducing agent and reduction time at fixed concentration of platinum salt, 5 mmol/L. Pt-SPE electrocatalysts prepared by non-equilibrium I-R method showed the lowest cell voltage of 2.17 V at reduction time, 90 min and with concentration of reducing agent 0.8 mol/L and the cell voltage with those by equilibrium I-R method was 2.42 V at reduction time, 60 min and with concentration of reducing agent 0.8 mol/L. The cell voltage were obtained at a current density $1\;A/cm^2$ and $80^{\circ}C$. In water electrolysis, hydrogen production efficiency by Pt-SPE electrocatalyst is 68.2% in case of non-equilibrium I-R method and 61.2% at equilibrium I-R method.

Enhanced Electrocatalytic Activity of Platinized Carbon Electrode via NaBH4 Treatment (NaBH4 화학적 처리를 통한 백금화 카본 전극의 촉매반응 향상)

  • Yun, Changsuk;Hwang, Seongpil
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.581-584
    • /
    • 2020
  • The effect of a chemical pretreatment on the surface carbon was investigated using a scanning electron microscope (SEM) and electrochemical methods. Primitive carbon has a reducing power likely due to incompletely oxidized functional groups on the surface. We aim to control this reducing power by chemical treatment and apply for the spontaneous deposition of nanoparticles (NPs). Highly ordered pyrolytic graphite (HOPG) was initially treated with a reducing agent, NaBH4 or an oxidizing agent, KMnO4, for 5 min. Subsequently, the pretreated carbon was immersed in a platinum (Pt) precursor. Unexpectedly, SEM images showed that the reducing agent increased spontaneous PtNPs deposition while the oxidizing agent decreased Pt loading more as compared to that of using bare carbon. However, the amount of Pt on the carbon obviously decreased by NaBH4 treatment for 50 min. Secondly, spontaneous reduction on pretreated glassy carbon (GC) was investigated using the catalytic hydrogen evolution reaction (HER). GC electrode treated with NaBH4 for a short and long time showed small (onset potential: -640 mV vs. MSE) and large overpotential for the HER, respectively. Although the mechanism is unclear, the electrochemistry results correspond to the optical data. As a proof-of-concept, these results demonstrate that chemical treatments can be used to design the shapes and amounts of deposited catalytic metal on carbon by controlling the surface state.

Development of Shrinkage Reducing Agent for 3D Printing Concrete (3D 프린팅 콘크리트용 수축저감제 개발)

  • Lee, Dong-gyu;Yoo, Byung-Hyun;Son, Ho-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.37-43
    • /
    • 2019
  • Since 3D printed concrete can be constructed without formwork, it is easy to construct an atypical structure, and the construction time and labor cost can be reduced. However, since the construction is exposed to the outside, shrinkage cracking due to moisture loss inside and outside the concrete occurs. Therefore, in order to improve the durability of the 3D printed concrete, a shrinkage reduction plan of the 3D printed concrete is required. In this study, glycol-based and alcohol-based shrinkage reducing agents were fabricated and evaluated for their performance. The shrinkage reducing agent samples showing excellent performance were selected and applied to 3D printed concrete. As a result, the compressive strength was increased by more than 10% and the shrinkage was reduced by more than 36% when using a shrinkage reducing agent. It is expected that the production of high quality 3D printed concrete will be possible because it is possible to increase the compressive strength and reduce the amount of dry shrinkage by applying a shrinkage reducing agent for 3D printed concrete.