• 제목/요약/키워드: reduced settlement

검색결과 143건 처리시간 0.025초

Assessment the effect of pile intervals on settlement and bending moment raft analysis of piled raft foundations

  • Ghiasi, Vahed;Moradi, Mobin
    • Geomechanics and Engineering
    • /
    • 제16권2호
    • /
    • pp.187-194
    • /
    • 2018
  • Application the pile group foundation to reduce overall settlement of the foundation and also avoid a very fruitful settlement of foundations, inconsistent was carried out. In such a case, in event that the Foundation, not as a mere pile group, which as a system consisting of a broad foundation with pile Group, economic design criteria will be provided in spite of high safety. A new approach in the design of the Foundation can be introduced as the piles are just a tool to improve the parameters of soil hardness; that it can work with detachable piles from raft. Centralized arrangement of piles as the most optimal layout of piles in reducing inconsistent settlement, which is the lowest value of resulting layout in this differential settlement. Using the combination of piles connected and disconnected to form the raft, bending moment created in the raft is reduced. It also concentrated arrangements have greatest effect in reducing amount of moment applied to the raft.

Tunnel 상부지반의 기초 지지력과 침하에 관한 연구 (The study on the bearing capacity and settlement of a foundation placed over a tunnel)

  • 김수삼;정승용;김용수;권태창
    • 한국철도학회논문집
    • /
    • 제2권4호
    • /
    • pp.20-31
    • /
    • 1999
  • When a foundation on the ground with tunnel is constructed, the ultimate bearing capacity of a footing is reduced by tunnel. In practice, structure may bate a considerable damage because of large settlement. This study shows that the settlement which is caused by variety of the ultimated bearing capacity leads fatal damages to the footing above tunnel. Therefore, it is necessary to study on the reduction both of the ultimate bearing capacity which leads a failure and of tolerable settlement which satisfies the safety of the building. For this reason, the variety of ultimated bearing capacity was analyzed using tub-dimensional elasto-plastic finite difference method in this paper. As a result, bearing capacity of the foundation above tunnel should be determined after establishing limit of allowable settlement and considering reduction-ratio of bearing capacity.

  • PDF

팽이기초공법(Top-Base Method)의 하중-침하량 분석 (Load-Settlement Characteristics of Concrete TOP-BASE Foundation on Soft Ground)

  • 김재영;정상섬;이재환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.210-221
    • /
    • 2009
  • A new foundation type which is called Top-Base method has been used frequently in engineering practices in Korea. In this study, the settlement behavior of concrete Top-Base foundation on soft ground is investigated since the consolidation settlement of the embedding depth and the effect of footing dimensions are not included in current Korean criterion (2007). To obtain detailed information, the model tests of the Top-Base foundation are performed using the PLAXIS 3D finite element analysis. It is shown that in-situ measurements and finite element analysis of the behavior of foundations indicate that consolidation settlement is reduced up and bearing capacity of the foundation increases up to 50%~100%, compared to the primary non-treated ground. Based on this study, it is found that the Top-Base foundation prevents the lateral deformation of soft ground and reduces its negative dilatancy to the surface settlement, and that the foundation creates rather uniform stress distribution under it to increase its bearing capacity. It is also found that the total settlement of Top-Base foundation was highly dependent on the consolidation settlement and footing configurations.

  • PDF

Settlement Reduction Effect of Advanced Back-to-Back Reinforced Retaining Wall

  • Koh, Taehoon;Hwang, Seonkeun;Jung, Hunchul;Jung, Hyuksang
    • International Journal of Railway
    • /
    • 제6권3호
    • /
    • pp.107-111
    • /
    • 2013
  • In order to constrain the railway roadbed settlement which causes track irregularity, and thus threats running stability and ride quality, advanced Back-to-Back (BTB) reinforced retaining wall was numerically analyzed as railway roadbed structure. This study is intended to improve conventional Back-to-Back reinforced retaining wall as the technology which would reduce the roadbed settlement in a way of constraining the lateral displacement of its prestressed vertical facing and inducing arching effects in roadbed (backfill) placed between masonry diaphragm wall and vertical facing. As a result of numerical analysis, it was found that the roadbed settlement was reduced by 10% due to the prestressed vertical facing and embedded masonry diaphragm wall of the advanced Back-to-Back reinforced retaining wall system.

해저지반 보강에 따른 인공어초의 침하 및 세굴 특성 (Settlement and Scour Characteristics of Artificial Reef according to Reinforced Ground)

  • 윤대호;서성호;김윤태
    • 한국해양공학회지
    • /
    • 제30권3호
    • /
    • pp.186-193
    • /
    • 2016
  • Recently in Korea, a marine ranching project has continued to grow with the increasing needs of sea development. Management techniques, including settlement reduction and scour protection, have been required for constructing and maintaining the artificial reefs of this marine ranching project. The generation of settlement and scour can be influenced by ground characteristics. In this study, various laboratory tests (penetration test, two-dimensional water tank test) were performed to determine the settlement and scour characteristics of artificial reefs under various ground conditions. Three kinds of ground reinforcement were prepared: unreinforced, geogrid, and hybrid bamboo mat. Penetration test results showed that the normalized settlement ratio of ground reinforced with a hybrid bamboo mat was smaller than those of unreinforced ground and geogrid-reinforced ground. Two-dimensional water tank test results showed that the scour characteristics of ground reinforced with a geogrid were more reduced and stable than unreinforced ground. The amount of scour and ground settlement also decreased with increasing reinforced area.

해저 연약지반 보강 조건에 따른 인공어초 침하 거동에 대한 실험적 연구 (An Experimental Study of Settlement Behavior of Artificial Reef according to Reinforcement Characteristics)

  • 윤대호;김윤태
    • 한국지반신소재학회논문집
    • /
    • 제16권1호
    • /
    • pp.53-61
    • /
    • 2017
  • 바다 자원의 조성을 위해 시설되는 인공어초는 해저 연약지반에 설치될 경우 침하 및 세굴에 의한 기능 상실이 발생할 수 있다. 따라서 본 연구에서는 해저 연약지반의 보강에 따른 인공어초의 침하 거동을 알아보기 위해 모래, 실트 및 점토 지반을 각각 조성하여 관입실험, 침하실험 등과 같은 다양한 실내실험을 수행하였다. 무보강(unreinforced), 지오그리드(geogrid) 보강 및 하이브리드 대나무매트(hybrid bamboo mat, HBM) 보강과 같은 3종류의 보강과 보강재의 면적에 따른 특성을 살펴보았다. 실험 결과 보강재의 면적이 증가할수록 보강 효과가 증가하는 경향을 보였으며, HBM이 지오그리드 단일 보강에 비해 더 뛰어난 보강 효과를 보였다.

Prediction of transverse settlement trough considering the combined effects of excavation and groundwater depression

  • Kim, Jonguk;Kim, Jungjoo;Lee, Jaekook;Yoo, Hankyu
    • Geomechanics and Engineering
    • /
    • 제15권3호
    • /
    • pp.851-859
    • /
    • 2018
  • There are two primary causes of the ground movement due to tunnelling in urban areas; firstly the lost ground and secondly the groundwater depression during construction. The groundwater depression was usually not considered as a cause of settlement in previous research works. The main purpose of this study is to analyze the combined effect of these two phenomena on the transverse settlement trough. Centrifuge model tests and numerical analysis were primarily selected as the methodology. The characteristics of settlement trough were analyzed by performing centrifuge model tests where acceleration reached up to 80g condition. Two different types of tunnel models of 180 mm diameter were prepared in order to match the prototype of a large tunnel of 14.4 m diameter. A volume loss model was made to simulate the excavation procedure at different volume loss and a drainage tunnel model was made to simulate the reduction in pore pressure distribution. Numerical analysis was performed using FLAC 2D program in order to analyze the effects of various groundwater depression values on the settlement trough. Unconfined fluid flow condition was selected to develop the phreatic surface and groundwater level on the surface. The settlement troughs obtained in the results were investigated according to the combined effect of excavation and groundwater depression. Subsequently, a new curve is suggested to consider elastic settlement in the modified Gaussian curve. The results show that the effects of groundwater depression are considerable as the settlement trough gets deeper and wider compared to the trough obtained only due to excavation. The relationships of maximum settlement and infection point with the reduced pore pressure at tunnel centerline are also suggested.

침하 저감용 보강재로 보강된 인공어초 설치 지반의 거동 특성 (Behaviors of Artificial Reef Reinforced with Settlement Reduction Reinforcement)

  • 윤대호;김윤태
    • 한국지반신소재학회논문집
    • /
    • 제18권1호
    • /
    • pp.1-9
    • /
    • 2019
  • 본 연구에서는 인공어초의 침하 및 세굴을 저감하고자 다양한 보강재로 보강된 해저 지반의 침하 및 세굴 거동 특성을 알아보았다. 지반에 적용한 보강재는 총 3가지로서 지오그리드(geogrid), 지오그리드-대나무 매트(geogrid-bamboo mat, GBM) 및 해초-지지봉 매트(seaweed-pile mat, SPM)를 각각 보강하여 실험을 수행하였다. 모래, 실트 및 점토 지반에 대해 지지력 실험, 대형 수조 침하 실험, 2차원 흐름 수조 세굴 실험 등 다양한 실내 실험을 수행하였다. 실험 결과 보강재의 보강에 따라 인공어초의 지지력 증진, 침하 및 세굴이 저감되는 효과를 보였으며, 모래나 실트 지반보다 점토 지반과 같은 연약 지반에서 보강효과가 더 크게 나타나는 경향을 보였다.

Improvement of pavement foundation response with multi-layers of geocell reinforcement: Cyclic plate load test

  • Khalaj, Omid;Tafreshi, Seyed Naser Moghaddas;Mask, Bohuslav;Dawson, Andrew R.
    • Geomechanics and Engineering
    • /
    • 제9권3호
    • /
    • pp.373-395
    • /
    • 2015
  • Comprehensive results from cyclic plate loading at a diameter of 300 mm supported by layers of geocell are presented. The plate load tests were performed in a test pit measuring $2000{\times}2000mm$ in plane and 700 mm in depth. To simulate half and full traffic loadings, fifteen loading and unloading cycles were applied to the loading plate with amplitudes of 400 and 800 kPa. The optimum embedded depth of the first layer of geocell beneath the loading plate and the optimum vertical spacing of geocell layers, based on plate settlement, are both approximately 0.2 times loading plate diameter. The results show that installation of the geocell layers in the foundation bed, increase the resilient behavior in addition to reduction of accumulated plastic and total settlement of pavement system. Efficiency of geocell reinforcement was decreased by increasing the number of the geocell layers for all applied stress levels and number of cycles of applied loading. The results of the testing reveal the ability of the multiple layers of geocell reinforcement to 'shakedown' to a fully resilient behavior after a period of plastic settlement except when there is little or no reinforcement and the applied cyclic pressure are large. When shakedown response is observed, then both the accumulated plastic settlement prior to a steady-state response being obtained and the resilient settlements thereafter are reduced. The use of four layers of geocell respectively decreases the total and residual plastic settlements about 53% and 63% and increases the resilient settlement 145% compared with the unreinforced case. The inclusion of the geocell layers also reduces the vertical stress transferred down through the pavement by distributing the load over a wider area. For example, at the end of the load cycle of the applied pressure of 800 kPa, the transferred pressure at the depth of 510 mm is reduced about 21.4%, 43.9%, 56.1% for the reinforced bases with one, two, and three layers of geocell, respectively, compared to the stress in the unreinforced bed.

토목섬유 보강 구조물의 응력 및 거동 해석 (An Analysis of Stresses and Behaviors in the Geotextile-Reinforced Soil Structures)

  • 고홍석
    • 한국농공학회지
    • /
    • 제30권4호
    • /
    • pp.94-108
    • /
    • 1988
  • The use of geotextile as reinforcing materials in soil structures has become widespread throughout the world. Geotextile reinforcement has been used in retaining walls, roadbed, embankment stabilization and especially reinforcement of soft foundation, and so on, In the past, however, its design and construction have been performed empirically. In this study, laboratory model tests were carried out in order to investigate the effects of geotextile rein- forcement on vertical and horizontal displacement and other characteristics in soft founda- tions. The experiments were executed in eight treatments ;no geotextile between embank - ment and subsoils, and seven geotextiles with different tensile strength. And such factors as the loading conditions, the tensile strength of geotextiles, the ingredient of geotextiles and the elapsed time were investigate in this study. And the analytical method were executed in order to study the stress and behavior of geotextile - reinforced soil structure by the nonlinear elasto - plastic finite element model. The following conclusions were drawn from this study. 1. Geotextile reinforcement reduced the effects of banking loads on subsoils more effectively with the increase of their tensile strength. 2. As the tensile strength of geotextiles was increase, the rate of the initial vertical disp - lacements of loading plate was reduced inverse proportional to loads, Rowever, the effect of loading was reduced when the loads exceed a certain limits, 3. The effect of reinforcement of nonwoven geotextile was 1.5-4.5 times larger than that of the woven geotextile with equivalent tensile strength. 4. The increased bearing capacity and the reduced settlement are proportioned as the tensile strength of geotextile. 5. The settlement at the long time loading were developed almost all, were completed after 10 days and the additional settlement were not developed since then. 6. The nonlinear elasto - plastic finite element method are accurate to predict the stresses and behayior of geotextile - reinforced soil structures.

  • PDF