• Title/Summary/Keyword: reduced pressure

Search Result 2,670, Processing Time 0.027 seconds

Effect of the Pulsatile Flow on the Morphological Changes of the Endothelial Cells in Blood Vessel (맥동유동이 혈관내 내피세포의 형태변화에 미치는 영향)

  • Suh, Sang-Ho;Yoo, Sang-Sin;Cho, Min-Tae;Park, Chan-Young;Chang, Jun-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.531-534
    • /
    • 2000
  • The objective of this investigation is to find effects of the pulsatile flow on the morphological changes of the endothelial cell(E.C.) in blood vessel. The shear flow experiment system is used to get the morphological changes of the E.C. The shapes of E.C. are simulated by the cosine curves and computer simulation is used to calculate the pressure and shear stress fields on the E.C. The inlet boundary condition is given from the measured velocity data of femoral artery. The endothelial cells reduce their heights in the flow field so as to reduce the pressure and wall shear stress on the surface. As the exposed time increases, the shear stress and pressure on the E.C. are reduced under the pulsatile flow. The shear stresses on the cell surface show the minimum values during the deceleration phase.

  • PDF

Conductivity measurements at low oxygen partial pressure of the stabilized $ZrO_{2}$ ceramics prepared by SHS

  • Soh, Dea-Wha;Korobova, Natalya
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.451-454
    • /
    • 2001
  • The ionic conductivity of cubic solid solutions in the system $Y_{2}O_{3}-ZrO_{2}$ prepared by SHS was examined. Conductivity-temperature data obtained at $1000^{\circ}C$ in atmosphere of low oxygen partial pressure ($10^{-40}$ atm) for $Y_{2}O_{3}-ZrO_{2}$ cubic solid solutions indicated that these materials could be reduced, the degree of reduction being related to the measuring electric field. At low impressed fields no reduction was observed. Thus, these conductivity data give a transference number for the oxygen ion in $Y_{2}O_{3}-ZrO_{2}$ cubic solid solutions greater than 0.99.

  • PDF

Energy Loss and Flow Rate at Junction Pipe (합류관에서의 손실과 유량)

  • Kim, M.K.;Kwon, O.B.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.39-44
    • /
    • 2005
  • This paper presents the study of flows at T-junction pipe with orifices. Experiments were carried out for several flow rates, orifice sizes, and pressure differences. Numerical simulations were also done to get more data for the wide range of flow rates. Experimental results and numerical ones are in a good agreement. Due to the effect of T-junction part, the flow rates at the lateral pipe are greater than those at straight pipe for the same pressure differences. When orifices were added, the effects of T-junction part on the ratio of flow rates and the ratio of loss coefficients reduced.

  • PDF

A Study on the Oil Lubrication Characteristics of Pin Bush for a Connecting Rod (커넥팅로드용 핀부시의 윤활특성 해석에 관한 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.25 no.3
    • /
    • pp.157-162
    • /
    • 2009
  • In this paper, the hydrodynamic pressure and minimum oil film thickness of a pin bush bearing for a connecting rod have been analyzed as functions of the number of oil grooves and an arc length of oil grooves. The lubrication characteristic of a pin bush is governed by oil groove design factors, which are considered in this study. The most influential design parameter is a number of oil grooves, which is three oil grooves with an arc length of oil groove, 1/6($60^{\circ}$). This means that oil groove with a long arc length of a pin bush does not contribute to the hydrodynamic pressure development. Thus the optimal design of a pin bush is necessary with an increased number of oil grooves and a reduced arc length.

Cavitation Behavior of AZ31 Sheet during Gas Blow Forming (AZ31 합금의 부풀림 성형시 공공의 거동)

  • Kim, S.H.;Kang, N.H.;Kwon, Y.N.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.601-610
    • /
    • 2011
  • Based on the facts that AZ31 magnesium alloy can be blow formed just like superplastic aluminum alloys and that most superplastic alloys fail by cavitation, the present study was undertaken to investigate the cavitation behavior of a fine-grained AZ31 sheet during blow forming at the elevated temperature. Other points of interest included the much lower strain rate and temperature dependencies of the magnesium alloy compared with conventional superplastic alloys. It was also aimed to find if cavitation in the AZ31 alloy can be suppressed by hydrostatic pressure, as is the case in most superplastic alloys. Interestingly, the application of hydrostatic pressure did not increase the blow formability of AZ31 sheet, even though it reduced the degree of cavitation. A possible reason for this behavior is discussed.

A Study on Estimating Characteristics of ABS Using High Frequency PWM Control (고주파수 PWM 제어를 이용한 ABS의 특성 평가에 관한 연구)

  • Kim, Byeong-Woo;Lee, Yong-Joo;Park, Ho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.69-74
    • /
    • 2004
  • In general the surge pressure generated in hydraulic systems causes noise, vibration and odd effect to the system. To reduce the surge pressure, high frequency PWM control of 20KHz was attempted. To estimate the braking noise caused by surge, a vehicle equipped with on-board ABS hydraulic modulator has been experimented with respect to the various breaking condition. Thorough this experiments, it was found that breaking noise has been reduced using high frequency PWM control method compare with low frequency method. To evaluate high frequency control m practice, including verification of general functionality, EMI tests was experimented. Its was found that it is necessary to have the solution to electromagnetic interference(EMI) generated by switching elements.

A High Pressure Fuel Control and its Injection Characteristics (고압 연료 제어와 분사 특성)

  • Kim, S.H.;Lee, Y.G.;Kim, J.U.;Kim, E.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.123-133
    • /
    • 1995
  • An injection control valve(ICV) was designed to control the fuel flow between a common rail and an injector with two commercial solenoids. To improve the performance of ICV, the characteristic method was applied. With this method, the flow characteristics in the ICV and the injector were studied and the parameters which affect the injection characteristics were also studied. From this study, following results were obtained. The injection duration can be controlled and with modifications of the effective valve stroke of ICV, the injection quantity and duration can be reduced to desired amount. Also the injection quantity and pressure can be controlled by reducing the hole size of the injector without the variation of the injection duration. For some conditions, the desired injection characteristics can be obtained by the changes of the valve timing, the effective valve stroke, the open pressure of the injector and the hole size of the injector.

  • PDF

Stability Analysis of Slope Considering Infiltration of Behind Ground (배면침투를 고려한 사면안정해석)

  • Shin, Jong-Ho;Kim, Hak-Moon;Jang, Kyung-Jun;Chae, Sung-Eun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1060-1067
    • /
    • 2009
  • Previous research on the slope failure has mainly reported that most of the slope failures occur due to surface rainfall infiltration in the rainy season. A slope of which surface is protected by shotcrete or plants, can also fail due to increase in pore water pressure from the ground water flow beneath the surface, rather than from the surface. In this study such case of slope behavior is investigated using the model test and numerical method including strength reduction method. Hydraulic boundary conditions of the slopes is considered using coupled numerical scheme. The failure mechanism of the slope is investigated and the effect of pore water pressure on slope safety is identified. Increase in pore water pressure due to lateral infiltration has significantly reduced the stability of slope.

  • PDF

carbofuran Induces Cardiovascular Dysfunction in Rat (휜쥐의 심혈관 기능에 대한 carbofuran독성작용)

  • 정이숙;이수환;백은주;문창규;문창현
    • YAKHAK HOEJI
    • /
    • v.45 no.6
    • /
    • pp.739-745
    • /
    • 2001
  • Of all pesticides, carbamates are known to be most common, since alternatives such as organophosphates have long lifetime and are extremely toxic to produce a delayed neurotoxic effect. Although a number of studies about toxicity of carbofuran, a most widely used carbamate, have been reported, its cardiovascular toxicity has not yet been studied. In the present study, we investigated its cardiovascular toxic effect in anesthetized rat in vivo and in isolated Langendorff rat heart, In anesthetized rat model, carbofuran (10 mg/kg) significantly reduced heart rate, and transiently increased blood pressure. In isolated rat heart, carbofuran (10${\mu}{\textrm}{m}$) caused a significant depression in the left ventricular developed pressure (LVDP), indicating contractile dysfunction by carbofuran. Carbofuran (10${\mu}{\textrm}{m}$) also decreased coronary flow rate (CFR) in isolated heart, indicating carbofuran-induced coronary dysfunction. These results suggest that carbofuran can cause cardiac dysfunction in rat in vivo and vitro.

  • PDF

FE Analysis of Alumina Green Body Density for Pressure Compaction Process (압축성형공정에 대한 알루미나 성형체 밀도분포의 FE 분석)

  • Im, Jong-In;Yook, Young-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.859-864
    • /
    • 2006
  • For the pressure compaction process of the ceramic powder, the green density is very different with both the ceramic body shape and the processing conditions. The density difference cause non-uniform shrinkages and deformations, and make cracks in the sintered ceramics. In this paper, Material properties of the alumina powder mixed with binder and the friction coefficient between the powder and the tool set were determined through the simple compaction experiments: Also the powder flow characteristics were simulated and the green density was analyzed during the powder compaction process with Finite Element Method (FEM). The results show that the density distributions of the green body were improved at the optimized processing condition and both the possibility of the farming crack generation and rho deformation of the sintered Alumina body were reduced.