• Title/Summary/Keyword: reduced pressure

Search Result 2,670, Processing Time 0.028 seconds

A Study on Falling Pressure Surge of ABS Using High Frequency PWM Control (고주파수 PWM제어를 이용한 ABS의 맥동 저감에 관한 연구)

  • Lee, Yong-Joo;Kim, Byeong-Woo;Park, Ho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.38-44
    • /
    • 2003
  • The solenoid valve in ABS hydraulic modulator is a two directional on-off valve and is controlled by around 100Hz high speed pulse width modulation. When the valve is switched from open state to closed state, noise and vibration due to pressure surge phenomena in the hydraulic line and wheel cylinder are made. In this study, we identify Pressure surge phenomenon in the braking process of a ABS, and investigate the way to reduce the phenomenon. For the purpose of theoretical analysis on the pressure surge in the closed state hydraulic line, characteristic curve method based on wave equation was utilized. To reduce the surge, high frequency control of 20kHz was attempted. The result showed that the surge pressure of 50% was reduced compared to one observed in the low frequency control. Duty variation of high frequency can control current of solenoid valve and prevent sudden change of displacement.

The Minimization of Generator Output Variations by Impulse Chamber Pressure Control during Turbine Valve Test (터빈 밸브시험 중 충동실 압력제어에 의한 발전기 출력변동 최소화)

  • Choi, In-Kyu;Kim, Jong-An;Park, Doo-Yong;Woo, Joo-Hee;Shin, Jae-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.152-159
    • /
    • 2010
  • This paper describes the actual application of a feedback control loop as a means for minimizing turbine impulse chamber pressure variation during the turbine steam valve tests at a 1,000 MW nuclear power plant. The chamber pressure control loop was implemented in the new digital control system which was installed as a replacement for the old analog type control system. There has been about 40MW of the generator output change during the steam valve tests, especially the high pressure governing valve tests, because the old control system had not the impulse chamber pressure control so the operators had to compensate steam flow drop manually. The process of each valve test consists of a closing process and an reopening process and the operators can make sure that the valves are in their sound conditions by checking the valves movement. The control algorithm described in this paper contributed to keep the change in megawatt only to 6MW during the steam valve tests. Thereby, the disturbance to reactor control was reduced, and the overall plant control system's stability was greatly improved as well.

Impedance Characteristics of an Expansion-Resonator Type Pulsation Attenuator(Attenuation on Flow and Pressure Ripple form a Hydraulic Piston Pump) (팽창 공명기형 맥동 감쇠기의 임피던스 특성(유압용 피스톤 펌프의 유량.압력맥동 감쇠))

  • 이상기
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.88-95
    • /
    • 2000
  • In this paper, an expansion-resonator type pulsation attenuator is proposed to absorb and attenuate flow an pressure ripple with high frequencies generated from hydraulic control systems. The basic principle of a pulsation attenuator proposed here is applied to propagation, reflection, absorption of pressure waves at the cross section of discontinuity and resonance in the pipeline. It has advantage of the compact size and high degree fo freedom for installation in hydraulic systems. The design scheme based on distributed parameter pipeline system with dissipative viscous compressible model is developed. To investigate the reduction of flow and pressure ripple with high frequencies produced by swash plate type axial piston pump, two kinds of attenuators are manufactured. It is experimently confirmed that the spectral intensity of flow and pressure ripple with high frequencies from the pump are reduced up to about 20$^{\circ}$~30dB by using attenuators proposed here. The calculated results were in good agreement with the measured values. From there sults of this study, it is shown that an expansion-resonator type pulsation attenuator is effective in a wide frequency ranges to attenuate the flow and pressure ripple from hydraulic components.

  • PDF

Clinical study on the effects of Bleeding Pressure Therapy in patients RBC, Hb and Hct change (습부항이 혈액학적 성상에 미치는 영향에 대한 연구)

  • Song, Bong-Keun;Park, Seug-Won;Kim, Joong-Kil;Kim, Yo-Han;Lee, Si-Woo;Jeong, In-Seok
    • The Journal of Internal Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.621-625
    • /
    • 2001
  • Objectives: We examined if their hematological status could be changed by blood loss in patients treated with bleeding pressure therapy. Methods: The patients were divided into two groups as follows: The Subject group(B) were 42 cases treated with bleeding pressure therapy. The Control group(N) were 43 cases treated with negative bleeding pressure therapy, We checked CBC & differ cell count of two groups. Results: The means of RBC, Hb count and Hct were slightly decreased after 1 week. but they were recovered after 2 weeks. Conclusions: These results indicate that Bleeding Pressure Therapy don't reduced RBC, Hb count and Hct in Patients.

  • PDF

Synthesized analysis and its verification of the piezoresistive pressure sensor (압저항형 압력센서의 통합해석 및 검증)

  • Yi, Seung-Hwan;Lee, Gon-Jae;Han, Seung-Oh
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.573-577
    • /
    • 2009
  • Piezoresistive pressure sensor have become the successfully-commercialized MEMS product and the related technologies have been well developed over the past decades. Regarding the design methodology, however, the coupled-physics FEM analyses of the transducer itself and the signal-processing circuitry design based on the conventional EDA are separated and both of the analyses were sequentially processed for the full design of the pressure sensor. For the fast and effective R&D, new design methodology is proposed in this paper where the FEM results are linked to the EDA environment and therefore most of the design works can be done in the EDA environments, which means the time-consuming FEM analyses can be minimized. In order to verify the proposed approach, a typical piezoresistive pressure sensor having the silicon diaphragm and piezoresistors was modeled and analyzed based on the proposed methodology. The verification results showed that the simulated results were matched well with the measured data within the 7% difference while the simulation time was reduced less than 5% compared to the conventional methodology. Through the proposed approach, various types of the piezoresistive pressure sensors can be developed in more effective way.

High Pressure Inactivation Kinetics of Salmonella enterica and Listeria monocytogenes in Milk, Orange Juice, and Tomato Juice

  • Xu, Hua;Lee, Hyeon-Yong;Ahn, Ju-Hee
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.861-866
    • /
    • 2009
  • Effects of pressure come-up and holding times on the inactivation of Salmonella enterica and Listeria monocytogenes were evaluated in deionized water, milk, orange juice, and tomato juice with pH 6.76, 6.85, 3.46, and 4.11, respectively. The inoculated samples were subjected to high pressure treatments at 300, 400, and 500 MPa for less than 10 min at $30^{\circ}C$. At 500 MPa, the numbers of S. enterica and L. monocytogenes in deionized water, orange juice, and tomato juice were reduced by more than 6 log CFU/mL during the come-up time. Compared to orange and tomato juices, milk showed a considerable baroprotective effect against S. enterica and L. monocytogenes. At 300 MPa, the D values for S. enterica in milk, orange juice, and tomato juice were 0.94, 0.41, and 0.45 min, while those for L. monocytogenes were 9.56, 1.11, and 0.94 min, respectively. Low pH resulted in a noticeable synergistic effect on the inactivation of S. enterica and L. monocytogenes in orange and tomato juices. Therefore, these results might provide more useful information for designing the entire high hydrostatic pressure (HHP) conditions, taking the come-up time reduction, and food system.

Evaporation Heat Transfer and Pressure Drop in Micro-Fin Tubes Before and After Tube-Expansion (마이크로핀관의 확관 전후 열전달 및 압력강하 변화 특성에 관한 연구)

  • Hwang, Yun-Uk;Kim, Min-Su
    • 연구논문집
    • /
    • s.34
    • /
    • pp.29-38
    • /
    • 2004
  • The objective of this study is to investigate the pressure drop and heat transfer characteristics of the micro-fin tubes before and after the tube-expansion process. Test tubes are single-grooved micro-fin tubes made of copper with an outer diameter of 9.52 mm before the tube-expansion. The direct heating method is applied in order to make the refrigerant evaporated in the micro-fin tubes. The test ranges of the heat flux, mass flux, and the saturation pressure are 5 to 15kW/$m^2$, 100 to 200 kg/$m^2s$ and 540 to 790 kPa, respectively. The effects of the mass flux, heat flux, and the saturation pressure of the refrigerant on the pressure drop and the heat transfer are presented for the refrigerant R22. In the test conditions of this study, the heat transfer coefficient for the micro-fin tube after the tube-expansion is about 16.5% smaller than that before the tube-expansion because the fin height of micro-fin is reduced and the fin shape becomes flatter. The micro-fin tube after the tube-expansion has about 7.7% greater average pressure drop than that before the tube-expansion process.

  • PDF

Tunnel Pressure acting on Shallow Tunnel in Unconsolidated Ground (미고결 저토피 터널에 작용하는 토압에 관한 연구)

  • Lee, Jae-Ho;Akutagawa, Shinish;Kim, Young-Su;Moon, Hong-Duk
    • Tunnel and Underground Space
    • /
    • v.17 no.6
    • /
    • pp.453-463
    • /
    • 2007
  • Terzaghi's tunnel pressure theory is generally used to estimate primary design pressures on tunnel support for shield and urban NATM tunnels until now. A trial is made in this paper to investigate the interaction between the ground deformation behavior and Terzaghi's tunnel pressure, which assumes pound's limit (or critical) state, by considering results of 'Terzaghi's tunnel pressure theory. two-dimensional reduced-scale model tunnel tests and nonlinear numerical analysis based on strain softening modeling. A full understanding between tunnel pressure and ground deformation behavior under the tunnel excavation and an effective utilization of this interaction lead to an economical tunnel support design and a safe construction of tunnel.

Thermal Stability of Superconductor NdBCO Sintered at Various Oxygen Partial Pressures (다양한 산소분압에서 소결한 NdBCO 초전도체의 열적 안정성)

  • Chung, J.K.;Kim, W.J.;Park, S.C.;Kang, S.G.;Lim, Y.J.;Kim, C.J.
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.133-138
    • /
    • 2009
  • The $Nd_{1+x}Ba_{2-x}Cu_3O_{7-{\delta}}$(Nd123) superconductor exhibits high performance in high magnetic field and high temperature. We have studied phase stability for Nd123 under reduced oxygen partial pressure and various heat-treatment conditions. The main phase is Nd123 and some samples contain small amounts of Nd422 depending on the temperature and oxygen partial pressure. The decomposition temperature decreases with decreasing oxygen partial pressure from $1052^{\circ}C(P(O_2)$=150 Torr) to about $845^{\circ}C(P(O_2)$=0.1 Torr). The liquidus line was steeper temperature with decreasing oxygen partial pressure. In same condition of oxygen partial pressure, the region of stable Nd123 phase was formed at slightly higher temperature than the region of stable YBCO phase.

  • PDF

The Development of the Insole for Gait Load Decreasing by Biomechanics Analysis (생체역학적 분석을 통한 보행 부하 감소용 인솔 개발)

  • Lee, Chang-Min;Oh, Yeon-Ju
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.23-30
    • /
    • 2005
  • The mailman's shoes should be designed in due consideration of occupational features they spend most of times to walk. For that reason, the shoes required functions to reduce the foot fatigue and to protect body by dispersing the body weight to the whole foot. In this research, for the functional improvement of the insole, insoles are investigated and analyzed by biomechanics experimentation. Under the base of these experimental results, we develop insoles that can reduce the body load and muscular-skeletal disorder. The pressures are concentrated on the metatarsus and heel by the result of analyzing pressure distributions of the using shoes. Accordingly, we offer the prototype functional insole that is ranked from high pressure to low pressure on the base of a shock absorb function. This prototype functional insole is examined for statistical significance by pressure distribution areas. The experimental results show that pressure areas are dispersed to whole foot, for this reason, pressures of the metatarsus and heel are reduced. Results of this research can not only improve the function of insoles which is suitable for occupational features, but also be a base on constructing data bases for biomechanics gait insoles.