• Title/Summary/Keyword: reduced expressions

Search Result 504, Processing Time 0.03 seconds

Inhibitory effect of water-soluble mulberry leaf extract on hepatic lipid accumulation in high-fat diet-fed rats via modulation of hepatic microRNA-221/222 expression and inflammation (고지방식이 급여 쥐에서 수용성 뽕나무 잎 추출물의 간 microRNA-221/222 발현 및 염증 조절을 통한 간 지질 축적억제 효과)

  • Lee, Mak-Soon;Kim, Cheamin;Ko, Hyunmi;Kim, Yangha
    • Journal of Nutrition and Health
    • /
    • v.55 no.2
    • /
    • pp.227-239
    • /
    • 2022
  • Purpose: This study investigated the effects of water-soluble mulberry leaf extract (ME) on hepatic lipid accumulation in high-fat diet-fed rats via the regulation of hepatic microRNA (miR)-221/222 and inflammation. Methods: Male Sprague-Dawley rats (4 weeks old) were randomly divided into 3 groups (n = 7 each) and fed with 10 kcal% low-fat diet (LF), 45 kcal% high-fat diet (HF), or HF + 0.8% ME for 14 weeks. Lipid profiles and cytokine levels of the liver and serum were measured using commercial enzymatic colorimetric and enzyme-linked immunosorbent assay, respectively. The messenger RNA (mRNA) and miR levels in liver tissue were assayed by real-time quantitative reverse-transcription polymerase chain reaction. Results: Supplementation of ME reduces body weight and improves the liver and serum lipid profiles as compared to the HF group. The mRNA levels of hepatic peroxisome proliferator-activated receptor-gamma, sterol regulatory element binding protein-1c, fatty acid synthase, and fatty acid translocase, which are genes involved in lipid metabolism, were significantly downregulated in the ME group compared to the HF group. In contrast, the mRNA level of hepatic carnitine palmitoyl transferase-1 (involved in fatty acid oxidation) was upregulated by ME supplementation. Furthermore, administration of ME significantly downregulated the mRNA levels of inflammatory mediators such as hepatic tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), monocyte chemoattractant protein-1, and inducible nitric oxide synthase. The serum levels of TNF-α, IL-6, and nitric oxide were also significantly reduced in ME group compared to the HF group. Expression of hepatic miR-221 and miR-222, which increase in the inflammatory state of the liver, were also significantly inhibited in the ME group compared to the HF group. Conclusion: These results indicate that ME has the potential to improve hepatic lipid accumulation in high-fat diet-fed rats via modulation of inflammatory mediators and hepatic miR-221/222 expressions.

Immunostimulatory and Anti-Obesity Activity of Lonicera insularis Nakai Extracts in Mouse Macrophages RAW264.7 Cells and Mouse Adipocytes 3T3-L1 Cells (섬괴불나무(Lonicera insularis Nakai) 추출물의 면역자극 및 항비만 활성)

  • Yu, Ju Hyeong;Yeo, Joo Ho;Choi, Min Yeong;Lee, Jae Won;Geum, Na Gyeong;An, Mi-Yun;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.35 no.4
    • /
    • pp.417-427
    • /
    • 2022
  • In this study, we investigated in vitro immuno-stimulatory and anti-obesity activity of fruit (LIF), leaves (LIL) and stems (LIS) from Lonicera insularis Nakai in mouse macrophages RAW264.7 cells and mouse pre-adipocytes 3T3-L1 cells. LIF, LIL and LIS increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and activated phagocytosis in RAW264.7 cells. Inhibition of toll-like receptor 2/4 (TLR2/4) partly blocked LIF, LIL and LIS mediated production of immunostimulatory factors. In addition, inhibition of mitogen-activated protein kinases (MAPK) signaling attenuated the production of immunostimulatory factors induced by LIF, LIL and LIS. Based on these results of this study, LIF, LIL and LIS is thought to activate macrophages the production of immunostimulatory factors and phagocytosis through toll-like receptor 2/4 (TLR2/4) and MAPKs signaling pathway. In anti-obesity study, LIF reduced the lipid accumulation in 3T3-L1 cells. LIF increased the protein phosphorylation expressions such as AMP-activated protein kinase (AMPK), hormone sensitive lipase (HSL), adipose triglyceride lipase (ATGL) related to the lipolysis of the adipocytes. In addition, LIF increased the expression of proteins involved in energy metabolism and brown adipose tissues differentiation such as peroxisome proliferator-activated receptor gamma coativator 1α (PGC-1α) and PR domain-containing16 (PRDM16). These results suggest that LIF is involved in lipid accumulation inhibition through expressing the proteins such as lipolysis and differentiation of white adipocytes to brown adipocytes.

Effect of Prepubertal Exposure to Di(2-ethylhexyl)phthalate on the Maturation of Rat Seminal Vesicles and Prostate Glands (사춘기 전 수컷 흰쥐의 저정낭과 전립선의 성숙에 미치는 Di(2-ethylhexyl) phthalate(DEHP)의 영향)

  • Heo, Hyun-Jin;Lee, Won-Yong;Yoon, Yong-Dal;Choi, Donchan;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.12 no.3
    • /
    • pp.251-259
    • /
    • 2008
  • The plasticizer di(2-ethylhexyl)phthalate(DEHP) is one of the most well known endocrine disrupting chemicals (EDCs) because of its strong anti-androgenic effects on the reproductive and developmental process in male rodents and human. The present study was performed to examine whether prepubertal exposure to DEHP can make any alteration during the maturation of accessory sex organs in male rats. As a result, there was no significant change in body weights, serum T levels and tissue weights except of seminal vesicle and ventral prostate in DEHP-treated animals compared to vehicle-treated ones. The seminal vesicle weights in high-dose group (200 mg/kg) were significantly lower than those from the control group (p<0.05), and ventral prostate weights were significantly lower than those from the control group (p<0.05) in both low-dose (20 mg/kg) and high-dose group. Histological studies revealed that the seminal vesicles from DEHP-treated groups showed reduced areas of mucosal folds. Pseudostratified columnar epithelia were observed in the ventral prostates of DEHP-treated samples while cuboidal epithelia were found in the control group. The transcriptional activities of ER-$\alpha$ in seminal vesicle from high-dose group (p<0.05) were significantly higher than those from the control group, and ER-$\beta$ expression was significantly decreased in low-dose group (p<0.05) compared to the control. In ventral prostate, ER-$\beta$ mRNA levels from low-dose group (p<0.05) were significantly lower than those from the control group, and significantly increased in high-dose group (p<0.01). AR expressions, however, were not significantly different in all experimental groups of both seminal vesicle and ventral prostate. In conclusion, the present study demonstrated that (i) adverse effect (s) of DEHP on sexual maturation during prepubertal period could be limited, (ii) seminal vesicle and prostate gland were sensitive targets to DEHP in prepubertal rats and (iii) the deleterious effects of DEHP might be mediated through ER-associated mechanism.

  • PDF

Policosanol Reduces Blood Cholesterol Levels by Inhibiting Sterol Regulatory Element-binding Proteins-1c and Fatty Acid Synthase (Sterol regulatory element-binding proteins-1c와 지방산 합성효소의 억제를 통한 폴리코사놀의 혈중 콜레스테롤 감소)

  • Min Jung Park;Byeong Min An;Dongjun Lee;Ji Myung Choi;Yung Hyun Choi;Bo Sun Joo
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.315-324
    • /
    • 2023
  • The underlying action of policosanol in lowering cholesterol level has not yet been clearly elucidated. Several recent studies have suggested that sterol regulatory element-binding proteins (SREBP)-1c play a role in the regulation of cholesterol synthesis via the fatty acid synthesis pathway. To date, no study has evaluated the effects of policosanol on SREBP-1c-mediated fatty acid synthesis. Therefore, this study aimed to investigate whether the SREBP-1c-mediated fatty acid biosynthetic pathway is associated with the cholesterol-lowering effects of policosanol. Seven-week-old C57BL/6 male mice were randomly divided into 7 groups (n=7 per group) and treated for 8 weeks as follows: 1) normal diet (normal control), 2) high-fat diet (HFD), 3) HFD+ethanol (Pol-0), 4) HFD+policosanol 1 mg/kg (Pol-1), 5) HFD+policosanol 2 mg/kg (Pol-2), 6) HFD+policosanol 4 mg/kg (Pol-4), and 7) HFD+simvastatin 50 ㎍/kg (positive control). Policosanol and simvastatin were administered at the same time every day while maintaining the HFD. Body weight and food intake were measured weekly for 8 weeks. After 8 weeks, serum cholesterol levels were measured, histological analysis was carried out, and the expressions of SREBP-1c and fatty acid synthase (FAS) in the liver tissues were examined. Policosanol reduced body weight and the amount of food intake in a dose-dependent manner. Serum cholesterol levels were significantly lowered in the Pol-1 and Pol-4 groups. The expression of SREBP-1c and FAS was also significantly decreased in the Pol-4 group. These results suggest that the cholesterol-lowering effects of policosanol can occur due to the inhibition of the expression of SREBP-1c and FAS.