• Title/Summary/Keyword: reduced compressive strength

검색결과 485건 처리시간 0.027초

액체 및 분체형 발수제를 혼입한 시멘트 모르타르의 압축강도 및 공극 특성 (Compressive Strength and Porosity Characteristics of Cement Mortar Mixed with Liquid and Powder Type Water repellent)

  • 김완수;조인성;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.96-97
    • /
    • 2020
  • In this study, the compressive strength and porosity characteristics of cement mortar mixed with liquid and powder composite water repellent were evaluated. When the liquid water repellent was mixed, the compressive strength at 28 days of age was 42% compared to OPC, and the compressive strength was greatly reduced. However, the 28-day compressive strength of the powder water repellent mixture and P5L1, P6L1 liquid and powder composite water repellent was about 97% compared to OPC, and there was little decrease in compressive strength.

  • PDF

Properties of pervious concrete containing high-calcium fly ash

  • Sata, V.;Ngohpok, C.;Chindaprasirt, P.
    • Computers and Concrete
    • /
    • 제17권3호
    • /
    • pp.337-351
    • /
    • 2016
  • This paper presents the properties of pervious concrete containing high-calcium fly ash. The water to binder ratios of 0.19, 0.22, and 0.25, designed void ratios of 15, 20, and 25%, and fly ash replacements of 10, 20, and 30% were used. The results showed that the use of fly ash as partial replacement of Portland cement enhanced the mixing of paste resulting in a uniform mix and reduced amount of superplasticizer used in the mixture. The compressive strength and flexural strength of pervious concrete were slightly reduced with an increase in fly ash replacement level, while the abrasion resistance increased due mainly to the pozzolanic and filler effects. The compressive strength and flexural strengths at 28 days were still higher than 85% of the control concrete. The aggregate size also had a significant effect on the strength of pervious concrete. The compressive strength and flexural strength of pervious concrete with large aggregate were higher than that with small aggregate.

HAZ 연화부를 가진 TMCP형 고장력강판의 압축최종강도에 관한 연구 - 정사각형판

  • 백점기;고재용
    • Journal of Welding and Joining
    • /
    • 제8권4호
    • /
    • pp.69-75
    • /
    • 1990
  • In this paper, ultimate compressive strength of TMCP 50HT steel plates (yield stress .sigma.$_{o}$=36kg/mm$^{2}$) with HAZ softening is studied. Finite element method formulated by the author is applied to analyze the elasto-plastic large deflection behaviour of the plates. The influence of HAZ softening breadth, welding direction and slenderness ratio on the ultimate compressive strength is investigated. The results obtained are summarized as 1) With the increasing of the HAZ softening breadth, early plasticity on the plates is formed and then the ultimate compressive strength is decreased, in which about 8% of the ultimate strength for the plate with h/t=4(h: HAZ softening breadth, t: plate thickness) was reduced comparing with no HAZ softening. 2) The large decrease of the ultimate strength for the case that the welding direction is normal to the loading direction is occurred than the case that the welding direction is parallel to the loading direction. 3) The influence of HAZ softening on the ultimate compressive strength is serious for thick plates, while it may be negligible for thin plates.s.

  • PDF

가열을 받은 초고강도 콘크리트 기둥부재의 잔골재 종류에 따른 내부온도이력 및 잔존압축강도 평가 (Evaluation on Temperature History and Residual Compressive Strength of Heated Ultra High Strength Concrete Column according to the Fine Aggregate Type)

  • 윤민호;김규용;신경수;최경철;이보경;미야우치 히로유키
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.91-92
    • /
    • 2013
  • The strength of ultra-high-strength concrete can be reduced even if the spalling is prevented at a high temperature. Therefore, in this study, we measured internal temperature history and residual compressive strength using a 300×300×450mm short column specimens which use the fiber(NY 0.15+PP 0.10+SF 0.30vol·%) and respectively silica sand, washed sand, the slag sand. As a result, the temperature history and residual compressive strength are almost similar regardless of the fine aggregate types.

  • PDF

심층혼합처리 공법의 시공조건 및 환경적 영향 분석 (Analysis of Construction Condition and Environmental Effect of Deep Soil Mixing)

  • 조진우;이용수;유준;신원재
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1155-1158
    • /
    • 2006
  • This paper presents a study on the construction condition and environmental effect of deep soil mixing. Construction condition means the difference in unconfined compressive strength with respect to the depth and location of samples. Environmental effect means alkalinity diffused from soil stabilizer. The experimental results indicate that the unconfined compressive strength vary with respect to the depth, and doesn't show consistency pattern. So, in field application we must decide a mixing ratio enough to satisfy the least unconfined compressive strength. The difference in unconfined compressive strength with respect to the location of samples is negligible. The generation of alkalinity from soil stabilizer is reduced by permeating in non-improved soil and it is expected that the diffusion of alkalinity has no environmental effect on soil and ground water.

  • PDF

고강도 시멘트 복합체의 배합조건에 따른 압축강도 발현 특성 (Characteristics of Compressive Strength Development of High Strength Cement Composites Depending on Its Mix Design)

  • 정연웅;오성우;조영근;정상화;김주형
    • 한국건설순환자원학회논문집
    • /
    • 제9권4호
    • /
    • pp.585-593
    • /
    • 2021
  • 본 연구에서는 고강도 시멘트 복합체의 배합조건에 따른 압축강도 발현 특성을 분석하기 위해 물/결합재비, OPC 대비 실리카 흄의 함량 및 단위 결합재량을 변수로 총 64개의 배합조건과 2종류의 양생 조건으로 배합실험 및 압축강도 측정을 실시하였다. 일반적인 OPC 콘크리트와 유사하게 물/결합재비의 증가는 고강도 시멘트 복합체의 압축강도를 감소하는 것으로 나타났으며, 상온 양생 시편의 경우 재령일에 따른 압축강도 증가가 뚜렷하게 발생하는 것으로 조사되었다. 하지만 고온 양생을 실시하는 경우 재령일에 따른 압축강도 증가는 관찰되지 않았다. OPC 대비 실리카 흄의 함량이 25%에서 15%로 낮아지는 경우 강도 변화는 미미한 것으로 조사되었으나, 15%에서 0% 감소하는 경우 뚜렷한 강도 감소가 식별되며, 물/결합재비가 낮은 경우 이러한 현상은 더욱 두드러지는 것으로 조사되었다. 단위 결합재량의 840kg/m3인 경우 압축강도 발현이 가장 우수한 것으로 나타났으며, 실리카 흄 함량이 낮은 경우 단위 결합재량 감소에 따른 압축강도 저하가 뚜렷해지는 것으로 조사되었다.

석고플라스터 혼합토의 공학적 특성 (A Study on the Engineering Characteristics of the plaster-soil uiiitures)

  • 도덕현;정성모
    • 한국농공학회지
    • /
    • 제27권4호
    • /
    • pp.53-60
    • /
    • 1985
  • The plaster mixed to loam and sandy soil from 4 to 12 percent by dry soil weight, and the compaction, permeability, CBR, unconfined compressive strength and freezingthawing test were performed The results obtained are summarized as follows; 1.The coefficient of permeability reduced sharply at the plaster content of 4 percent, and in the CBR test, the swelling ratio reduced by the increment of plaster content. 2.The addition of plaster increased the unconfined compressive strength by the cementing effect, and it was found that the optimum plaster content, existed with the soil type, which showed the maximum strength 3.It was possible to enhance the unconfined compressive strength of the gypsum-lime-soil mixtures when the optimum content of plaster was mixed to the hydrated lime. 4.In case of sandy soil, the relative frost heave decreased with the mixture of plaster, however in loam soil, the relative frost heave began to increase at the plaster content of 12 percent than non-treated soil. Therefore the optimum plaster content existed for protecting frost heave by the different soil type. 5.The above summarized results make it possible to expect the effects such as improvement of soil properties, decrement of permeability, increment of unconfined compressive strength, and protection of frost heave, etc, therefore, it is considered that it is possible to it is plaster as sub-base materials of road.

  • PDF

Confinement effectiveness of CFRP strengthened concrete cylinders subjected to high temperatures

  • Raoof, Saad M.;Ibraheem, Omer F.;Tais, Abdulla S.
    • Advances in concrete construction
    • /
    • 제9권6호
    • /
    • pp.529-535
    • /
    • 2020
  • The current study investigated experimentally the effectiveness of Carbon Fiber Reinforced Polymer (CFRP) in confining concrete cylinders after being subjected to high temperature. Parameters examined were: (a) the exposing temperatures (20, 100, 200, 400 600 and 700℃) and (b) the number of CFRP layers (1 and 3 layers). A uniaxial compressive testing was carried out on 36 concrete cylinders with dimensions of 150 mm×300 mm. The results obtained show that the compressive strength reduced with the increased of temperature compared to that measured at 20℃. In particular, the reduction in the compressive strength was more observed when the temperature exceeded 400℃. Further, the concrete cylinders confined with one and three layers of CFRP significantly increased the compressive strength compared to the counterpart unconfined specimen tested at the same temperature. Also, the average percentages of the increase in the compressive strength were approximately 112% and 158% when applying 1 and 3 layers of CFRP, respectively, compared to the counterpart unstrengthened specimen tested at the same temperature.

Optimization of cost and mechanical properties of concrete with admixtures using MARS and PSO

  • Benemaran, Reza Sarkhani;Esmaeili-Falak, Mahzad
    • Computers and Concrete
    • /
    • 제26권4호
    • /
    • pp.309-316
    • /
    • 2020
  • The application of multi-variable adaptive regression spline (MARS) in predicting he long-term compressive strength of a concrete with various admixtures has been investigated in this study. The compressive strength of concrete specimens, which were made based on 24 different mix designs using various mineral and chemical admixtures in different curing ages have been obtained. First, The values of fly ash (FA), micro-silica (MS), water-reducing admixture (WRA), coarse and fine aggregates, cement, water, age of samples and compressive strength were defined as inputs to the model, and MARS analysis was used to model the compressive strength of concrete and to evaluate the most important parameters affecting the estimation of compressive strength of the concrete. Next, the proposed equation by the MARS method using particle swarm optimization (PSO) algorithm has been optimized to have more efficient equation from the economical point of view. The proposed model in this study predicted the compressive strength of the concrete with various admixtures with a correlation coefficient of R=0.958 rather than the measured compressive strengths within the laboratory. The final model reduced the production cost and provided compressive strength by reducing the WRA and increasing the FA and curing days, simultaneously. It was also found that due to the use of the liquid membrane-forming compounds (LMFC) for its lower cost than water spraying method (SWM) and also for the longer operating time of the LMFC having positive mechanical effects on the final concrete, the final product had lower cost and better mechanical properties.

인-할로겐계 난연제가 경질폴리우레탄 폼의 물성에 미치는 영향 (Effect of Halogen-phosphours Flame Retardant Content on Properties of Rigid Polyurethane Foam)

  • 김창범;김상범
    • 공업화학
    • /
    • 제24권1호
    • /
    • pp.77-81
    • /
    • 2013
  • 본 연구에서는 인-할로겐계 난연제가 첨가된 경질 폴리우레탄 폼(PUF)을 합성하여 인-할로겐계 난연제의 종류와 함유량, 노화 가속화 전 후의 열적, 물리적, 난연 특성 등의 변화와 이들의 상관관계를 조사하였다. 난연제로는 Tri(2-chloroethyl) phosphate [TCEP]와 Tris(2-chloropropyl) phosphate [TCPP]를 0, 3, 5, 10, 15, 20, 30%씩 변화시키며 첨가하였다. 난연제의 첨가량이 증가함에 따라 PUF의 reduced compressive strength와 유리전이 온도가 감소하였다. 노화 가속화 후에는 초기 미 반응된 물질의 추가 반응으로 인하여 reduced compressive strength와 유리전이 온도가 증가하였다. SEM과 열전도도 측정을 통하여 TCPP가 TCEP보다 cell의 크기와 분포를 균일하게 하여 TCPP가 첨가된 PUF가 TCEP가 첨가된 PUF 보다 열전도도가 감소 한다는 것을 알 수 있었다. Vacuum oven을 통한 노화가속화 전후의 PUF 난연성을 비교한 결과 노화 후 PUF의 발화 시간은 감소하고 연소 거리가 증가하여 난연성이 현저히 감소함을 확인하였다.