• Title/Summary/Keyword: reduced beam section

Search Result 120, Processing Time 0.032 seconds

Effects of near-fault loading and lateral bracing on the behavior of RBS moment connections

  • Yu, Qi-Song Kent;Uang, Chia-Ming
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.145-158
    • /
    • 2001
  • An experimental study was conducted to evaluate the effects of loading sequence and lateral bracing on the behavior of reduced beam section (RBS) steel moment frame connections. Four full-scale moment connections were cyclically tested-two with a standard loading history and the other two with a near-fault loading history. All specimens reached at least 0.03 radian of plastic rotation without brittle fracture of the beam flange groove welds. Two specimens tested with the nearfault loading protocol reached at least 0.05 radian of plastic rotation, and both experienced smaller buckling amplitudes at comparable drift levels. Energy dissipation capacities were insensitive to the types of loading protocol used. Adding a lateral bracing near the RBS region produced a higher plastic rotation; the strength degradation and buckling amplitude were reduced. A non-linear finite element analysis of a one-and-a-half-bay beam-column subassembly was also conducted to study the system restraint effect. The study showed that the axial restraint of the beam could significantly reduce the strength degradation and buckling amplitude at higher deformation levels.

Seismic Design of Reduced Beam Section (RBS) Steel Moment Connections with Bolted Web Attachment (보 웨브를 볼트 접합한 RBS 철골모멘트접합부의 내진설계)

  • Lee, Cheol-Ho;Kim, Jae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.87-96
    • /
    • 2004
  • Recent test results on reduced beam section (RBS) steel moment connections showed that specimens with a bolted web tended to perform poorly due to premature brittle fracture of the beam flange at the weld access hole. The measured strain data appeared to imply that a higher incidence of base metal fracture in bolted-web specimens is related to, at least in part, the increased demand on the beam flanges due to the web bolt slippage and the actual load transfer mechanism which is completely different from that usually assumed in connection design. In this paper, the practice of providing web bolts uniformly along the beam depth was brought into question. A new seismic design procedure, which is more consistent with the actual load path identified from the analytical and experimental studies, was proposed together with improved connection details.

Mathematical solution for free vibration of sigmoid functionally graded beams with varying cross-section

  • Atmane, Hassen Ait;Tounsi, Abdelouahed;Ziane, Noureddine;Mechab, Ismail
    • Steel and Composite Structures
    • /
    • v.11 no.6
    • /
    • pp.489-504
    • /
    • 2011
  • This paper presents a theoretical investigation in free vibration of sigmoid functionally graded beams with variable cross-section by using Bernoulli-Euler beam theory. The mechanical properties are assumed to vary continuously through the thickness of the beam, and obey a two power law of the volume fraction of the constituents. Governing equation is reduced to an ordinary differential equation in spatial coordinate for a family of cross-section geometries with exponentially varying width. Analytical solutions of the vibration of the S-FGM beam are obtained for three different types of boundary conditions associated with simply supported, clamped and free ends. Results show that, all other parameters remaining the same, the natural frequencies of S-FGM beams are always proportional to those of homogeneous isotropic beams. Therefore, one can predict the behaviour of S-FGM beams knowing that of similar homogeneous beams.

Non-Prismatic Beam Element for Nonlinear Seismic Analysis of Steel Moment Frames I: Element Formulation (강재 모멘트 골조의 비선형 지진 해석을 위한 부등단면 보 요소 I: 요소개발)

  • Hwang, Byoung-Kuk;Jeon, Seong-Min;Kim, Kee-Dong;Ko, Man-Gi
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.27-35
    • /
    • 2007
  • This study presents a non -prismatic beam element for modeling the elastic and inelastic behavior of the steel beam, which has the post-Northridge connections in steel moment frames that are subjected to earthquake ground motions. The elastic stiffness matrix for non-prismatic members with reduced beam section (RES) connection is in the closed-form. The plasticity model is of a discrete type and is composed of a series of nonlinear hinges connected by rigid links. The hardening rules can model the inelastic behavior for monotonic and random cyclic loading, and the effects of local buckling. Verification and calibration of the model are presented in a companion paper.

Effects of PZ Strength on Cyclic Seismic Performance of RBS Steel Moment Connections (RBS 철골모멘트접합부의 내진성능에 대한 패널존 강도의 영향)

  • Lee, Cheol-Ho;Kim, Jae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.149-158
    • /
    • 2006
  • The reduced beam section (RBS) steel moment connection has performed well in past numerous tests. However there still remain several design issues that should be further examined. One such issue on RBS connection performance is the panel zone strength. Although a significant amount of test data are available, a specific recommendation for a desirable range of panel zone strength versus beam strength has yet to be proposed. In this paper, the effects of panel zone strength on the cyclic performance of RBS connection are investigated based on the available test database from comprehensive independent testing programs. A criterion for a balanced panel zone strength that assures sufficient plastic rotation capacity while reducing the amount of beam buckling is proposed. Numerical studies to supplement the test results are then presented based on the validated finite element analysis. Satisfactory numerical simulation achieved in this study also indicates that numerical analysis based on quality finite element modeling can supplement or replace, at least in part, the costly full-scale cyclic testing of steel moment connections.

A transfer matrix method for in-plane bending vibrations of tapered beams with axial force and multiple edge cracks

  • Lee, Jung Woo;Lee, Jung Youn
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.125-138
    • /
    • 2018
  • This paper proposes a transfer matrix method for the bending vibration of two types of tapered beams subjected to axial force, and it is applied to analyze tapered beams with an edge or multiple edge open cracks. One beam type is assumed to be reduced linearly in the cross-section height along the beam length. The other type is a tapered beam in which the cross-section height and width with the same taper ratio is linearly reduced simultaneously. Each crack is modeled as two sub-elements connected by a rotational spring, and the method can evaluate the effect of cracking on the desired number of eigenfrequencies using a minimum number of subdivisions. Among the power series available for the solutions, the roots of the differential equation are computed using the Frobenius method. The computed results confirm the accuracy of the method and are compared with previously reported results. The effectiveness of the proposed methods is demonstrated by examining specific examples, and the effects of cracking and axial loading are carefully examined by a comparison of the single and double tapered beam results.

Constructability and Economic Evaluation of Continuous Hoop Reinforcement Method

  • Kang, Su-Min;Park, Sung-Woo;Jang, Se-Woong;Jin, Jong-Min;Eom, Tae-Sung;Park, Hong-Gun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.3
    • /
    • pp.291-305
    • /
    • 2013
  • This paper presents the continuous hoop reinforcement method as a means to overcome the difficulty of rebar construction due to the seismic detail of lateral reinforcement. Because the continuous hoop has no seismic hook, and there is less interference during the rebar work, rebar quantities and construction time can be reduced. Since the details of column and beam continuous hoops are different from those of conventional lateral reinforcements, the construction method should be developed through mock-up tests. The length of the beam mock-up is 8m and the section size is $500mm{\times}700mm$, the height of the column mock-up is 2.8m and 4m, and the section size is $800{\times}800mm$. The length and the size are determined based on the elements that are generally used in reinforced concrete basement parking lots and office buildings. The results of the mock-up test showed that the quantities of rebar could be reduced by 20% and the time could be reduced by up to 40% compared with conventional lateral reinforcements.

Curved Beam Theory Based On Centroid-Shear Center Formulation (도심-전단중심 정식화를 이용한 개선된 곡선보이론)

  • Kim Nam-Il;Kyung Yong-Soo;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.1033-1039
    • /
    • 2006
  • To overcome the drawback of currently available curved beam theories having non-symmetric thin-walled cross sections, a curved beam theory based on centroid-shear center formulation is presented for the spatially coupled free vibration and elastic analyses. For this, the elastic strain and kinetic energies considering the thickness-curvature effect and the rotary inertia of curved beam are derived by degenerating the energies of the elastic continuum to those of curved beam. And then the equilibrium equations and the boundary conditions are consistently derived for curved beams having non-symmetric thin-walled cross section. It is emphasized that for curved beams with L- or T-shaped sections, this thin-walled curved beam theory can be easily reduced to tl1e solid beam theory by simply putting the sectional properties associated with warping to zero. In order to illustrate the validity and the accuracy of this study, FE solutions using the Hermitian curved beam elements are presented and compared with the results by previous research and ABAQUS's shell elements.

  • PDF

Behavior of Reduced Beam Section Connectios with Web Openins (웨브 개구부를 갖는 철골 보-기둥 접합부의 내진 성능에 관한 연구)

  • Park, Jong Won;Kang, Seoung Min;Hwang, In Kyu;Kang, Tae Kyoung;Kwon, Ki Ju
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.395-405
    • /
    • 2001
  • A test program was conducted on seismic-resistant steel moment connections constructed using Reduced Beam Sections with beam web openings. In the connection, in order to enhance ductility capacity under severe cyclic loads, a portion of the beam web near the beam-to-column connection is cut out instead of the beam flange as in dogbone connections. A total of 4 large scale specimens were tested in this program. The specimens were all made using $H-458{\times}417{\times}30{\times}50$ sections for the columns and $H-792{\times}300{\times}14{\times}22$ sections for the beams. Test specimens showed excellent performance similar to that of dogbone connections.

  • PDF

Cyclic Seismic Performance of Reduced Beam Section Steel Moment Connections: Effects of Panel Zone Strength and Beam Web Connection (패널존 강도 및 보 웨브 접합방식이 RBS 철골 모멘트접합부의 내진거동에 미치는 영향)

  • Lee, Cheol-Ho;Jeong, Sang-Woo;Kim, Jin-Ho
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.337-348
    • /
    • 2003
  • 본 연구는 8개의 RBS (reduced beam section) 내진 철골모멘트접합부의 실물대 실험결과를 요약한 것이다. 본 실험의 주요변수는 보 웨브 접합법 및 패널존 강도를 택하였다. 균형 패널존 시험체는 접합부의 내진성능을 감소시키지 않으면서, 보와 패널존이 함께 균형적으로 지진에너지를 소산시키도록 설계하여 값비싼 패널존보강판(doubler plates)의 수요를 줄이고자 시도한 것이다. 보 웨브를 용접한 시험체는 모두 특별 연성모멘트골조에서 요구되는 접합부 회전능력을 충분히 발휘하였다. 반면 보 웨브를 볼트접합한 시험체는 조기에 스캘럽을 가로지르는 취성파단이 발생하는 열등한 성능을 보였다. 보 그루브 용접부 자체의 취성파괴가 본 연구에서와 같이 양질의 용접에 의해 방지되면, 스켈럽 부근의 취성파단이 다음에 해결해야 할 문제로 대두되는 경향을 보인다. 보 웨브를 볼팅한 경우에 접합부 취성파단의 빈도가 월등히 높은 이유를 실험 및 해석결과를 토대로 제시하였다 측정된 변형도 데이터에 의할 때, 접합부의 전단력 전달메카니즘은 흔히 가정하는 고전 휨이론에 의한 예측과 전혀 다르다. 이는 전통적 보 웨브 설계법을 재검토할 필요가 있음을 시사하는 것이다. 아울러, 본 연구의 제한된 실험자료 및 접합부에서 요구되는 바람직한 거동기준을 근거로 균형 패널존의 강도범위에 대한 예비적 추정치를 제시하였다.

  • PDF