• Title/Summary/Keyword: reduce patient dose

Search Result 286, Processing Time 0.025 seconds

A Study on the Isodose Distribution in a Vascular Characterization Room

  • Choi, Young;Kang, Byung-Sam;Min, Jung-Whan
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.1
    • /
    • pp.7-11
    • /
    • 2011
  • As applications of radiation grow wider from use in the early detection of lesions and preventive diagnosis purposes to the treatment of diseases, the possibilities for patients and working professionals to be exposed to radiation are becoming greater than ever. This can not only directly bring about an increase in patient's individual radiation exposure, but also brings about an increase in the annual radiation dose of working professionals. Therefore, research and countermeasures to reduce radiation dosage are required. In this study, space dosimetry has been divided into two separate measuments with an understanding of the increasing number of angiography procedures: front perspective and side perspective. According to the results of the isodose curve, a way to minimize radiation exposure in working professionals has been suggested. This was made possible by workers through awareness of suitable working positions.

  • PDF

X-Ray Exposure Reduction using Rare Earth Intensifying Screen for Chest Roentgenology (흉부(胸部) X선촬영(X線撮影)에 있어서 희토류증감지(稀土類增感紙) 사용(使用)에 따른 피폭선량(被曝線量) 경감(輕減)에 관한 검토(檢討))

  • Huh, Joon;Kim, Chang-Kyun;Kang, Hong-Seok;Lee, Sun-Sook;Song, Jae-Kwan;Lee, Sang-Suk
    • Journal of radiological science and technology
    • /
    • v.4 no.1
    • /
    • pp.23-30
    • /
    • 1981
  • In chest x-ray radiography, intensifying screen is used to the exposed dose of patients. Recently, newer materials-rere earth elements-are used in intensifying screen. Authors studied the aspects of chest x-ray radiogram and obtained the results that rare earth element intensifying screen did not harm in detail and could reduce the exposed dose of patient by 1/24 and below.

  • PDF

A Case Report of Improvement in Chronic Migraine Headache and Nausea with Korean Medicine Treatment and FCST (Functional Cerebrospinal Therapy) (FCST(기능적 뇌척주요법)를 병행한 한의 치료로 만성편두통 환자의 두통과 오심을 치료한 증례 보고 1례)

  • Cha, Ji-yun;Jung, Eun-sun;Kim, Chan-young;Kim, Hyun-tae;Lee, Young-jun;Seol, In-chan;Kim, Yoon-sik;Yoo, Ho-ryong;Jo, Hyun-kyung
    • The Journal of Internal Korean Medicine
    • /
    • v.39 no.4
    • /
    • pp.784-793
    • /
    • 2018
  • Objective: Chronic migraine is a headache syndrome accompanied by nausea, dyspepsia, depression, and insomnia and it reduces the quality of life. The present case revealed that Korean medicine treatment and Functional Cerebrospinal Therapy (FCST) can reduce headache and nausea in patients with chronic migraine. Method: A 39-year-old female patient with chronic migraine visited Dunsan Korean Medicine Hospital. She had headache combined with moderate nausea and wanted to reduce her dose of almotriptan. We treated her with Korean medicine, including acupuncture, herbal medicine, and a Chuna treatment based on FCST. We evaluated her symptoms using a Numeric Rating Scale (NRS) for headache and nausea every day. Result: After 22 days of treatment, the NRS of headache and nausea had reduced. Her dose of almotriptan was also reduced and the patient felt improvement of in her quality of life. Conclusion: We suggest that Korean medicine treatment combined with FCST can improve the headache and nausea of chronic migraine patients.

General Radiography Imaging Usage and Effective Dose of Inpatients: Based on Data from Inpatients in 2018 (입원환자 일반촬영 이용량 및 피폭선량: 2018년 입원환자데이터)

  • Jong-Won Gil
    • Journal of radiological science and technology
    • /
    • v.47 no.2
    • /
    • pp.107-116
    • /
    • 2024
  • In this study, we analyzed the use of general radiography imaging and effective dose in inpatients. Our aim is to help reduce national medical radiation exposure doses and develop rational health-care financial policies. The effective dose for each general radiography was calculated using the ALARA-GR program for 53 types (total: 260 codes) general radiography codes selected from 'National Health Insurance Care Benefit Cost'. The usage of general radiography was analyzed in the 2018 inpatient patient data of the Health Insurance Review and Assessment Service, and the effective dose for each general radiography was analyzed. 89.00% of inpatients undergo general radiography imaging at least once, with an average of 12.63 scans per person and an effective dose of 1.00 mSv. Those who received support from Medical Aid showed a higher value compared to those who were insured by National Health Insurance, with 17.39 cases and 1.43 mSv (p<.001). Chest had the highest usage rate at 23.12% for general radiography imaging, while L-spine had the highest effective dose at 24.53%. It is estimated that 420 inpatients patients undergo 121 to 820 general radiography imaging procedures per year, and 233 inpatients are estimated to have an annual effective dose of >20.00~58.25 mSv. Rational use of health-care finances and the practice of medical radiation safety management are essential for the well-being of individuals, the enhancement of quality of life, and the improvement of health-care quality.

Shielding Capability Evaluation of Mobile X-ray Generator through the Production assembled Shield (일체형 방어벽 제작을 통한 이동형 엑스선 발생기의 차폐능 평가)

  • Kim, Seung-Uk;Han, Byeoung-Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.895-908
    • /
    • 2018
  • As modern science is developed and advanced, examination and number of times using radiation are increasing daily. General diagnostic X-ray generator is installed on stationary form, But X-ray generator was developed because patient who is in the intensive care unit, operation room, emergency room can not move to general x-ray room. What we examine patient by x-ray generator is certainly necessary, So patient exposure is inevitable. but reducing radiation exposure is highly important matter about radiation technology, guardian, patient in the same hospital room, nurse etc. For this reason, rule regarding safety control of diagnostic x-ray generator revised for radiation worker, patient and protector proclaim that mobile diagnostic x-ray shield must placed in case of examine different location excluding operation room, emergency room, intensive care unit. But, radiogical technologist is having a lot of difficulties to examine with mobile x-ray generator, diagnostic x-ray shield partition, image plate and lead apron. So, when we use x-ray generator, we manufacture shield tools can be attached to the mobile x-ray generator On behalf of x-ray shield partition and conduct analysis and in comparison to part of body and distribution of dose rate and find way to reduce radiation exposure through distribution of dose rate of patient within the radiogical technologist, medical team. Mobile x-ray generator aimed at SHIMADZU inc. R-20, We manufactured equipment for shielding x-ray scattered x-ray by installing shielding wall from side to side based on support beam on the mobile x-ray generator. Shielding wall when moving can be folded and designed to expand when examine. Experiment measured five times in each by an angle for dose rate of eyes, thyroid, breast, abdomen and gonad on exposure condition of upper and lower extremity, chest, abdomen which is examined many times by mobile x-ray generator. We used dosimeter RSM-100 made by IJRAD and measured a horizontal dose rate by body part. The result of an experiment, shielding decreasing rate of the front and the rear showed 77 ~ 98.7%. Therefore using self-production shielding wall reduce scattered x-ray occurrence rate and confirm can decrease exposure dose consequently. Therefore, through this study, reduction result which is used shielding wall of self-production will be a role of shielding optimization and it could be answer about reduction of medical exposure recommended by ICRP 103.

Evaluation of Radiation Dose and Imaging of the QC Program in Mammography MLO View (MLO View의 유방촬영에서 QC 프로그램을 이용한 선량 및 영상 평가)

  • Lee, Seon-Hwa;Kim, Jung-Min;Kweon, Dae-Cheol
    • Journal of radiological science and technology
    • /
    • v.38 no.3
    • /
    • pp.221-228
    • /
    • 2015
  • Purpose: In digital mammography QC program was used for the purpose of reducing low-dose and high-definition images of the radiation dose. Materials and Methods: In digital mammography using a QC phantom according to the average glandular dose in the exposure method MLO view $0^{\circ}C$, $30^{\circ}C$, $45^{\circ}C$, $50^{\circ}C$, $55^{\circ}C$, $70^{\circ}C$, was measured at $90^{\circ}C$ intervals, an image with Hologic QC program to the SNR and CNR was measured to evaluate. Results: The average dose in the MLO view was wired to $90^{\circ}C$ when the maximum was 1.75 mGy, it decreased approximately 6% was measured at $45^{\circ}C$ 1.65 mGy. In addition, 1.67 mGy, manual record, there were an average wired in accordance with the exposure dose and the dose of 1.52 mGy difference in the way auto filter. Image quality evaluation at every angular section SNR 50 ~ 52, shows a slight difference in CNR 11 ~ 12, it was included in the manufacturer's recommended value. Conclusion: The dose was lowest in MLO view $45^{\circ}C$, the difference between SNR and CNR were insignificant. The method of exposure will need a way to reduce the exposure of the patient's body or unnecessary patient by placing a difference in settings in which the characteristics.

The Effect of Source to Image-Receptor Distance(SID) on Radiation Dose for Digital Chest Radiography (Digital Chest Radiography에서 방사선량에 대한 Source to Image-Receptor Distance (SID)의 영향)

  • Kwon, Soonmu;Park, Changhee;Park, Jeongkyu;Son, Woonheung;Jung, Jaeeun
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.4
    • /
    • pp.203-210
    • /
    • 2014
  • Chest radiography has been typically performed at SID of 180 cm. Image quality and patient dose were investigated between 180 cm and 340 cm by 20 cm intervals at 120 kVp and 320 mAs with the AEC. VGA was performed for qualitative assessment and SNR was analysed for quantitative assessment on the image of the chest phantom. Patients dose was measured by ESAK and PCXMC was used for effective dose. As a result, when using the standard of SID of 180 cm which is typically used in the clinical practice, in the case of ESAK, 240 cm, 280 cm, and 320 cm were 8.7%, 11.47%, and 13.56% respectively therefore significant reduction was confirmed. In the case of effective dose, 2.89%, 4.67%, and 6.41% in the body and 5.08%, 6.09%, and 9.6% in lung were reduced. In the case of SNR, 9.04%, 8.24%, and 11.46% were respectively decreased especially, by 8.03% between SID of 260 cm and 300 cm, but SNR was 5.24 up to 340 cm. There were no significant differences in VGA thus the image is valuable in diagnosis. It is predicted that increasing SID up to 300 cm in digital chest radiography can reduce patient dose without decreasing image quality.

Usefulness Evaluation of HRCT using Reconstruction in Chest CT (흉부CT 검사 시 HRCT 영상 재구성의 유용성)

  • Park, Sung-Min;Kim, Keung-Sik;Kang, Seong-Min;Yoo, Beong-Gyu;Lee, Ki-Bae
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.17 no.1
    • /
    • pp.13-18
    • /
    • 2015
  • Purpose : Skip the repetitive HRCT axial scan in order to reduce the exposure of patients during chest HRCT scan, Helical Scan Data into a reconstructed image, and exposure of the patient change and visually evaluate the usefulness of the HRCT images. Materials and method : Patients were enrolled in the survey are 50 people who underwent chest CT scans of patients who presented to the hospital from January 2015 to March 2015. 50 people surveyed 22 people men and 28 people women people showed an average distribution of 30 to 80 years age was 48 years. 50 patients to Somatom Sensation 64 ch (Siemens) model with 120 kVp tube voltage to a reference mAs tube current to mAs (Care dose, Siemens) as a whole, including the lungs and the chest CT scan was performed. Scan upon each patient CARE dose 4D (Automatic exposure control, Siemens Medical Solution Erlangen, Germany) was to maintain the proper radiation dose scan every cross-section through a device that automatically adjusts the tube current of. CT scan is the rotation time of the Tube slice collimation, slice width 0.6 mm, pitch factor was made under the terms of 1.4. CT scan obtained after the raw data (raw data) to the upper surface of the axial images and coronal images for each slice thickness 1 mm, 5 mm intervals in the high spatial frequency calculation method (hight spatial resolution algorithm, B60 sharp) was the use of the lung window center -500 HU, windows were reconstructed into images in the interval -1000 HU to see. Result : 1. Measure the total value of DLP 50 patients who proceed to chest CT group A (Helical Scan after scan performed with HRCT) and group B (Helical Scan after the HR image reconstruction to the original data) compared with the group divided, analysis As a result of the age, but show little difference for each age group it had a decreased average dose of about 9%. 2. A Radiation read the results of the two Radiologist and a doctor upper lobe and middle lobe of the lung takes effect the visual evaluation is not a big difference between the two images both, depending on the age of the patient, especially if the blood vessels of the lower lobe (A: 3.4, B: 4.6) and bronchi(A: 3.8, B4.7) image shake caused by breathing in anxiety (blurring lead) to the original data (raw data) showed that the reconstructed image is been more useful in diagnostic terms. Conclusion : Scan was confirmed a continuous, rapid motion video to get Helical scan is much lower lobe lung reduction in visual blurring, Helical scan data to not repeat the examination by obtaining HRCT images reorganization reduced the exposure of the patient.

  • PDF

Surface Dose Evaluation According to the Environment Around the Patient after Nuclear Medicine Examination (핵의학 검사 후 환자의 주위 환경에 따른 표면 선량 평가)

  • Lee, Young-Hee;Park, Jae-Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.943-948
    • /
    • 2021
  • The purpose of this study was to investigate changes in surface dose due to increased scattering of gamma rays from patients injected with 99mTc and 18F, which are radioactive isotopes, in close contact with materials with high atomic number such as the walls of the stable room. Prepare 99mTc and 18F by injecting 20 and 10 mCi respectively into the NEMA phantom, and then measuring the surface dose for 60 minutes by positioning the phantom at a height of 1 m above the surface, at a distance of 0, 5 and 10 cm from the wall, and at the same location as the phantom facing the wall. Each experiment was repeated five times for reproducibility of the experiment and one way analysis of variability (ANOVA) was performed for significance testing and Tukey was used as a post-test. The study found that surface doses of 220.268, 287.121, 243.957, and 226.272 mGy were measured at 99mTc, respectively, in the case of empty space and in the case of 0, 5 and 10 cm, while those of 18F were measured at 637.111, 724.469, 657.107, and 640.365 mGy, respectively. In order to reduce changes in surface dose depending on the patient's location while waiting, it is necessary to keep the distance from the ground or the wall where the patient is closely adhered to, or install an air mattress, etc., to prevent the scattered lines as much as possible, considering the scattered lines due to the wall etc. in future setup of the patient waiting room and safety room, and in addition to the examination, the external skin width may be reduced.

Consideration on Measured Patients Dose of Three-Dimensional and Four-Dimensional Computer Tomography when CT-Simulation to Radiation Therapy (방사선치료를 위한 CT 검사 시 3DCT와 4DCT에 대한 피폭선량 고찰)

  • Park, Ryeong-Hwang;Kim, Min-Jung;Lee, Sang-Kyu;Park, Kwang-Woo;Jeon, Byeong-Cheol;Cho, Jeong-Hee;Yoo, Beong-Gyu;Lee, Jong-Seok
    • Journal of radiological science and technology
    • /
    • v.34 no.4
    • /
    • pp.341-349
    • /
    • 2011
  • This study was to measure the patient dose difference between 3D treatment planning CT and 4D respiratory gating CT. Study was performed with each 10 patients who have lung and liver cancer for measured patient exposure dose by using SOMATON SENSATION OPEN(SIMENS, GERMANY). CTDIvol and DLP value was used to analyze patient dose, and actual dose was measured in the location of liver and kidney for abdominal examination and lung, heart and spinal cord for chest examination. Rando phantom were used for the experiment. OSLD was used for in-vitro and in-vivo dosimetry. Increasing overall actual dose in 4D respiratory gated CT-simulation using OSLD increase the dose by 5.5 times for liver cancer patients and 6 times for lung cancer patients. In CT simulation of 10 lung cancer patients, CTDIvol value was increased by 5.7 times and DLP 2.4 times. For liver cancer patients, CTDIvol was risen by 3.8 times and DLP 1.6 times. The accuracy of treatment volume could be increased in 4D CT planning for position change due to the breaths of patient in the radiation therapy. However, patients dose was increased in 4D CT than 3D CT. In conclusion, constant efforts is required to reduce patients dose by reducing scan time and scan range.