• Title/Summary/Keyword: reduce patient dose

Search Result 286, Processing Time 0.031 seconds

Dosimetric evaluation of using in-house BoS Frame Fixation Tool for the Head and Neck Cancer Patient (두경부암 환자의 양성자 치료 시 사용하는 자체 제작한 BoS Frame 고정장치의 선량학적 유용성 평가)

  • Kim, kwang suk;Jo, kwang hyun;Choi, byeon ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.35-46
    • /
    • 2016
  • Purpose : BoS(Base of Skull) Frame, the fixation tool which is used for the proton of brain cancer increases the lateral penumbra by increasing the airgap (the distance between patient and beam jet), due to the collision of the beam of the posterior oblique direction. Thus, we manufactured the fixation tool per se for improving the limits of BoS frame, and we'd like to evaluate the utility of the manufactured fixation tool throughout this study. Materials and Methods : We've selected the 3 patients of brain cancer who have received the proton therapy from our hospital, and also selected the 6 beam angles; for this, we've selected the beam angle of the posterior oblique direction. We' ve measured the planned BoS frame and the distance of Snout for each beam which are planned for the treatment of the patient using the BoS frame. After this, we've proceeded with the set-up that is above the location which was recommended by the manufacturer of the BoS frame, at the same beam angle of the same patient, by using our in-house Bos frame fixation tool. The set-up was above 21 cm toward the superior direction, compared to the situation when the BoS frame was only used with the basic couch. After that, we've stacked the snout to the BoS frame as much as possible, and measured the distance of snout. We've also measured the airgap, based on the gap of that snout distance; and we've proceeded the normalization based on each dose (100% of each dose), after that, we've conducted the comparative analysis of lateral penumbra. Moreover, we've established the treatment plan according to the changed airgap which has been transformed to the Raystation 5.0 proton therapy planning system, and we've conducted the comparative analysis of DVH(Dose Volume Histogram). Results : When comparing the result before using the in-house Bos frame fixation tool which was manufactured for each beam angle with the result after using the fixation tool, we could figure out that airgap than when not used in accordance with the use of the in-house Bos frame fixation tool was reduced by 5.4 cm ~ 15.4 cm, respectively angle. The reduced snout distance means the airgap. Lateral Penumbra could reduce left, right, 0.1 cm ~ 0.4 cm by an angle in accordance with decreasing the airgap while using each beam angle in-house Bos frame fixation tool. Due to the reduced lateral penumbra, Lt.eyeball, Lt.lens, Lt. hippocampus, Lt. cochlea, Rt. eyeball, Rt. lens, Rt. cochlea, Rt. hippocampus, stem that can be seen that the dose is decreased by 0 CGE ~ 4.4 CGE. Conclusion : It was possible to reduced the airgap by using our in-house Bos frame fixation tool for the proton therapy; as a result, it was possible to figure out that the lateral penumbra reduced. Moreover, it was also possible to check through the comparative analysis of the treatment plan that when we reduce the lateral penumbra, the reduction of the unnecessary irradiation for the normal tissues. Therefore, Using the posterior oblique the Brain cancer proton therapy should be preceded by decreasing the airgap, by using our in-house Bos frame fixation tool; also, the continuous efforts for reducing the airgap as much as possible for the proton therapy of other area will be necessary as well.

  • PDF

The Plan of Dose Reduction by Measuring and Evaluating Occupationally Exposed Dose in vivo Tests of Nuclear Medicine (핵의학 체내검사 업무 단계 별 피폭선량 측정 및 분석을 통한 피폭선량 감소 방안)

  • Kil, Sang-Hyeong;Lim, Yeong-Hyeon;Park, Kwang-Youl;Jo, Kyung-Nam;Kim, Jung-Hun;Oh, Ji-Eun;Lee, Sang-Hyup;Lee, Su-Jung;Jun, Ji-Tak;Jung, Eui-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.26-32
    • /
    • 2010
  • Purpose: It is to find the way to minimize occupationally exposed dose for workers in vivo tests in each working stage within the range of the working environment which does not ruin the examination and the performance efficiency. Materials and Methods: The process of the nuclear tests in vivo using a radioactive isotope consists of radioisotope distribution, a radioisotope injection ($^{99m}Tc$, $^{18}F$-FDG), and scanning and guiding patients. Using a measuring instrument of RadEye-G10 gamma survey meter (Thermo SCIENTIFIC), the exposure doses in each working stage are measured and evaluated. Before the radioisotope injection the patients are explained about the examination and educated about matters that require attention. It is to reduce the meeting time with the patients. In addition, workers are also educated about the outside exposure and have to put on the protected devices. When the radioisotope is injected to the patients the exposure doses are measured due to whether they are in the protected devices or not. It is also measured due to whether there are the explanation about the examination and the education about matters that require attention or not. The total exposure dose is visualized into the graph in using Microsoft office excel 2007. The difference of this doses are analyzed by wilcoxon signed ranks test in using SPSS (statistical package for the social science) program 12.0. In this case of p<0.01, this study is reliable in the statistics. Results: It was reliable in the statistics that the exposure dose of injecting $^{99m}Tc$-DPD 20 mCi in wearing the protected devices showed 88% smaller than the dose of injecting it without the protected devices. However, it was not reliable in the statistics that the exposure dose of injecting $^{18}F$-FDG 10 mCi with wearing protected devices had 26% decrease than without them. Training before injecting $^{99m}Tc$-DPD 20 mCi to patient made the exposure dose drop to 63% comparing with training after the injection. The dose of training before injecting $^{18}F$-FDG 10 mCi had 52% less then the training after the injection. Both of them were reliable in the statistics. Conclusion: In the examination of using the radioisotope $^{99m}Tc$, wearing the protected devices are more effective to reduce the exposure dose than without wearing them. In the case of using $^{18}F$-FDG, reducing meeting time with patients is more effective to drop the exposure dose. Therefore if we try to protect workers from radioactivity according to each radioisotope characteristic it could be more effective and active radiation shield from radioactivity.

  • PDF

Evaluation of Applicability of Customized Bolus According to 3D Printer Material Characteristics (3D 프린터 소재 특성에 따른 맞춤형 볼루스의 적용성 평가)

  • Kyung-Tae Kwon;Hui-Min Jang;Myeong-Seong Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1091-1097
    • /
    • 2023
  • Bolus is used in radiation therapy to prescribe an even dose to the tumor when the skin surface is inclined or has irregularities. At this time, the dose to the skin surface increases. Due to the patient's unique body structure and irregular skin, voids may occur between the bolus and the skin, which may reduce the accuracy of treatment. Therefore, in this study, the existing bolus and the self-produced bolus through 3D printing were applied to the nasal area, and the difference between the surface dose after treatment plan and the dose directly measured with an Optically Stimulated luminescence(OSL) dosimeter was compared to the existing bolus. The bolus rate was 97%, PLA 100.33%, ePETELA 75A 100.53%, and ePETELA 85A 100.36%. It was confirmed that there was little error in the measurement values and treatment plan values for each material. In addition, compared to when applying a conventional bolus, a difference of -3% to +0.5% for a 3D printed bolus can be confirmed, so a customized bolus produced through 3D printing can complement the shortcomings of the existing bolus. It is believed that there will be.

The Study for Optimal Exposure Condition of Chest Examination of Digital Radiography System (디지털 방사선 촬영장치의 흉부촬영 최적 조사조건에 관한 연구)

  • Park, Ji-Koon;Jung, Bong-Jae;Park, Hyong-Hu;Noh, Si-Cheol;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.2
    • /
    • pp.109-115
    • /
    • 2016
  • Despite of increasing the use of the digital imaging device in the radiology area, the setting on the optimal irradiation conditions are insufficient. In this study, the exposure dose and image quality by exposure condition of digital radiography device were compared. The exposure doses were obtained by adjusting the exposure condition as 5 steps respectively based on the exposure conditions that are currently used of CR and DR radiography devices. The acquired image has been assessed by 20 medical image professors using the assessment method of the Japanese Society for Tuberculosis Prevent. As a result, in the case of the CR system, the better image quality was obtained in the condition of 120 kVp and 1.5 mAs~2.4 mAs (quality score 91~95.5 points) than standard exposure condition(110 kVp, 3.2 mAs, 86 points). And exposure dose was evaluated as low with $61.3{\sim}98.4{\mu}Gy$ than standard condition($105.11{\mu}Gy$). In DR system, however, the image quality score was higher as 97~98.6 points in the lower tube voltage range (112 kVp, 2.4~3.2 mAs) condition than the standard exposure condition (125 kVp, 3.2 mAs, 91 points). In addition, the exposure dose was $61.5-77.2{\mu}Gy$ lower than standard condition($93{\mu}Gy$). In addition, the exposure dose was low as $61.5-77.2{\mu}Gy$ than standard condition($93{\mu}Gy$). With the results of this study, we confirmed that it is possible to reduce the patient exposure dose with the same image quality by adjusting the optimal exposure condition of digital device.

Consideration on Shielding Effect Based on Apron Wearing During Low-dose I-131 Administration (저용량 I-131 투여시 Apron 착용여부에 따른 차폐효과에 대한 고찰)

  • Kim, Ilsu;Kim, Hosin;Ryu, Hyeonggi;Kang, Yeongjik;Park, Suyoung;Kim, Seungchan;Lee, Guiwon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.1
    • /
    • pp.32-36
    • /
    • 2016
  • Purpose In nuclear medicine examination, $^{131}I$ is widely used in nuclear medicine examination such as diagnosis, treatment, and others of thyroid cancer and other diseases. $^{131}I$ conducts examination and treatment through emission of ${\gamma}$ ray and ${\beta}^-$ ray. Since $^{131}I$ (364 keV) contains more energy compared to $^{99m}Tc$ (140 keV) although it displays high integrated rate and enables quick discharge through kidney, the objective of this study lies in comparing the difference in exposure dose of $^{131}I$ before and after wearing apron when handling $^{131}I$ with focus on 3 elements of external exposure protection that are distance, time, and shield in order to reduce the exposure to technicians in comparison with $^{99m}Tc$ during the handling and administration process. When wearing apron (in general, Pb 0.5 mm), $^{99m}Tc$ presents shield of over 90% but shielding effect of $^{131}I$ is relatively low as it is of high energy and there may be even more exposure due to influence of scattered ray (secondary) and bremsstrahlung in case of high dose. However, there is no special report or guideline for low dose (74 MBq) high energy thus quantitative analysis on exposure dose of technicians will be conducted based on apron wearing during the handling of $^{131}I$. Materials and Methods With patients who visited Department of Nuclear Medicine of our hospital for low dose $^{131}I$ administration for thyroid cancer and diagnosis for 7 months from Jun 2014 to Dec 2014 as its subject, total 6 pieces of TLD was attached to interior and exterior of apron placed on thyroid, chest, and testicle from preparation to administration. Then, radiation exposure dose from $^{131}I$ examination to administration was measured. Total procedure time was set as within 5 min per person including 3 min of explanation, 1 min of distribution, and 1 min of administration. In regards to TLD location selection, chest at which exposure dose is generally measured and thyroid and testicle with high sensitivity were selected. For preparation, 74 MBq of $^{131}I$ shall be distributed with the use of $2m{\ell}$ syringe and then it shall be distributed after making it into dose of $2m{\ell}$ though dilution with normal saline. When distributing $^{131}I$ and administering it to the patient, $100m{\ell}$ of water shall be put into a cup, distributed $^{131}I$ shall be diluted, and then oral administration to patients shall be conducted with the distance of 1m from the patient. The process of withdrawing $2m{\ell}$ syringe and cup used for oral administration was conducted while wearing apron and TLD. Apron and TLD were stored at storage room without influence of radiation exposure and the exposure dose was measured with request to Seoul Radiology Services. Results With the result of monthly accumulated exposure dose of TLD worn inside and outside of apron placed on thyroid, chest, and testicle during low dose $^{131}I$ examination during the research period divided by number of people, statistics processing was conducted with Wilcoxon Signed Rank Test using SPSS Version. 12.0K. As a result, it was revealed that there was no significant difference since all of thyroid (p = 0.345), chest (p = 0.686), and testicle (p = 0.715) were presented to be p > 0.05. Also, when converting the change in total exposure dose during research period into percentage, it was revealed to be -23.5%, -8.3%, and 19.0% for thyroid, chest, and testicle respectively. Conclusion As a result of conducting Wilcoxon Signed Rank Test, it was revealed that there is no statistically significant difference (p > 0.05). Also, in case of calculating shielding rate with accumulate exposure dose during 7 months, it was revealed that there is irregular change in exposure dose for inside and outside of apron. Although the degree of change seems to be high when it is expressed in percentage, it cannot be considered a big change since the unit of accumulated exposure dose is in decimal points. Therefore, regardless of wearing apron during high energy low dose $^{131}I$ administration, placing certain distance and terminating the administration as soon as possible would be of great assistance in reducing the exposure dose. Although this study restricted $^{131}I$ administration time to be within 5 min per person and distance for oral administration to be 1m, there was a shortcoming to acquire accurate result as there was insufficient number of N for statistics and it could be processed only through non-parametric method. Also, exposure dose per person during lose dose $^{131}I$ administration was measured with accumulated exposure dose using TLD rather than through direct-reading exposure dose thus more accurate result could be acquired when measurement is conducted using electronic dosimeter and pocket dosimeter.

  • PDF

Dosimetric effects of couch attenuation and air gaps on prone breast radiation therapy (Prone Breast Phantom을 이용한 couch 산란영향 평가)

  • Kim, Min Seok;Jeon, Soo Dong;Bae, Sun Myeong;Baek, Geum Mun;Song, Heung Gwon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.43-51
    • /
    • 2017
  • Purpose: The purpose of this study is to evaluate the dosimetric effects of couch attenuation and air gaps using 3D phantom for prone breast radiation therapy. Materials and method: A 3D printer(Builder Extreme 1000) and computed tomography (CT) images of a breast cancer patient were used to manufacture the customized breast phantom. Eclipse External Beam Planning 13.6 (Varian Medical Systems Palo Alto, CA, USA) was used to create the treatment plan with a dose of 200 cGy per fraction with 6 MV energy. The Optically Stimulated Luminescence Detector(OSLD) was used to measure the skin dose at four points (Med 1, Med 2, Lat 1, Lat 2) on the 3D phantom and ion-chamber (FC65-G) were used to perform the in-vivo dosimetry at the two points (Anterior, Posterior). The Skin dose and in-vivo dosimetry were measured with reference air gap (3 cm) and increased air gaps (1, 2, 3, 4, 5, 6 cm) from reference distance between the couch and 3D phantom. Results: As a result, measurement for the skin dose at lateral point showed a similar value within ${\pm}4%$ compared to the plan. While the air gap increased, skin dose at medial 1 was reduced. And it was also reduced over 7 % when the air gap was more than 3 cm compared to radiation therapy plan. At medial 2 it was reduced over 4 % as well. The changes of dose from variety of the air gap showed similar value within ${\pm}1%$ at posterior. As the air gap was increased, the dose at anterior was also increased and it was increased by 1 % from the air gap distance more than 3 cm. Conclusion: Dosimetrical measurement using 3D phantom is very useful to evaluate the dosimetric effects of couch attenuation and air gaps for prone breast radiation therapy. And it is possible to reduce the skin dose and increase the accuracy of the radiation dose delivery by appling the optimized air gap.

  • PDF

Maximum Value Calculation of High Dose Radioiodine Therapy Room (고용량 방사성옥소 치료 병실의 최대치 산출)

  • Lee, Kyung-Jae;Cho, Hyun-Duck;Ko, Kil-Man;Park, Young-Jae;Lee, In-Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.28-34
    • /
    • 2010
  • Purpose: According to increment of thyroid cancer recently, patients of high dose radioiodine therapy were accumulated. Taking into consideration the acceptance capability in the current facility, this study is to calculate the maximum value of high dose radioiodine therapy in patients for treatment. Materials and Methods: The amount and radioactivity of waste water discharged from high dose radioiodine therapy in patients admitted at present hospital as well as the radiation density of the air released into the atmosphere from the high dose radioiodine therapy ward were measured. When the calculated waste water's radiation and its density in the released air satisfies the standard (management standard for discharge into water supply 30 Bq/L, management standard for release into air 3 $Bq/m^3$) set by the Ministry of Education, Science and Technology, the maximum value of treatable high dose radioiodine therapy in patients was calculated. Results: When we calculated in a conservative view, the average density of radiation of waste water discharged from treating high dose radioiodine therapy one patient was 8 MBq/L and after 117 days of diminution in the water-purifier tank, it was 29.5 Bq/L. Also, the average density of radiation of waste water discharged from treating high dose radioiodine therapy two patients was 16 MBq/L and after 70 days of diminution in the water-purifier tank, it was 29.7 Bq/L. Under the same conditions, the density of radiation released into air through RI Ventilation Filter from the radioiodine therapy ward was 0.38 $Bq/m^3$. Conclusion: The maximum value of high dose radioiodine therapy in patients that can be treated within the acceptance capability was calculated and applied to the current facility, and if double rooms are managed by improving the ward structure, it would be possible to reduce the accumulated treatment waiting period for radioiodine therapy in patients.

  • PDF

The effect of patient position on dose in radiation therapy of liver cancer (환자 자세가 간의 방사선 치료 시 선량에 미치는 영향)

  • Jung, Won Seok;Kim, Ju Ho;Kim, Young Jae;Shin, Ryung Mi;Oh, Jeong Hun;Jeong, Geon A;Jo, Jun Young;Kim, Gi Chul;Choi, Tae Kyu
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Purpose : To analyze tumor's movement and volume change from changing position in order to minimize movement caused by breathing. Materials and Methods : We conducted survey of 14 patients with HCC(Hepatocellular carcinoma). Patient immobilization device was made in two ways(Supine position, prone position) and from image acquisition, tumor's movement, volume and dose are analyzed. Results : The mean movement of target(LR, Left-right) in supine position and prone position was $2.76{\pm}1.25mm$, $2.21{\pm}0.93mm$. AP(Anterior-posterior) and SI(Superior-inferior) was $4.02{\pm}1.63mm$, $11.56{\pm}3.08mm$, $3.36{\pm}1.17mm$, $7.45{\pm}1.96mm$. Treatment volume was decreased and normal liver volume was increased in prone position. Conclusion : We could reduce the margin of the treatment volume by minimizing the movement of liver caused by breathing. Especially in prone position, it is considered to be able to decrease the movement of the liver and increase normal liver volume.

Effects of Arc Number or Rotation Range upon Dose Distribution at RapidArc Planning for Liver Cancer (간암환자를 대상으로 한 래피드아크 치료계획에서 아크수 및 회전범위가 선량분포에 미치는 영향)

  • Park, Hae-Jin;Kim, Mi-Hwa;Chun, Mi-Son;Oh, Yeong-Teak;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.165-173
    • /
    • 2010
  • In this paper, we evaluated the performance of 3D CRT, IMRT and three kind of RA plannings to investigate the clinical effect of RA with liver cancer case. The patient undergoing liver cancer of small volume and somewhat constant motion were selected. We performed 3D CRT, IMRT and RA plannings such as 2RA, limited triple arcs (3RA) and 3MRA with Eclipse version 8.6.15. The same dose volume objectives were defined for only CTV, PTV and body except heart, liver and partial body in IMRT and RA plannings. The steepness of dose gradient around tumor was determined by the Normal Tissue Objective function with the same parameters in place of respective definitions of dose volume objectives for the normal organs. The approach between the defined dose constraints and the practical DVH of CTV, PTV and Body was the best in 3MRA and the worst in IMRT. The DVHs were almost the same among RAs. Plans were evaluated using Conformity Index (CI), Homogeneity Index (HI) and Quality of coverage (QoC) by RTOG after prescription with dose level surrounding 98% of PTV in the respective plans. As a result, 3MRA planning showed the better favorable indices than that of the others and achieved the lowest MUs. In this study, RA planning is a technique that is possible to obtain the faster and better dose distribution than 3D CRT or IMRT techniques. Our result suggest that 3MRA planning is able to reduce the MUs further, keeping a similar or better targer dose homogeneity, conformity and sparing normal tissue than 2RA or 3RA.

Comparing the dosimetric impact of fiducial marker according to density override method : Planning study (양성자 치료계획에서 fiducial marker의 density override 방법에 따른 선량변화 비교 : Planning study)

  • Sung, Doo Young;Park, Seyjoon;Park, Ji Hyun;Park, Yong Chul;Park, Hee Chul;Choi, Byoung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2017
  • Purpose: The application of density override is very important to minimize dose calculation errors by fiducial markers of metal material in proton treatment plan. However, density override with actual material of the fiducial marker could make problem such as inaccurate target contouring and compensator fabrication. Therefore, we perform density override with surrounding material instead of actual material and we intend to evaluate the usefulness of density override with surrounding material of the fiducial marker by analyzing the dose distribution according to the position, material of the fiducial marker and number of beams. Materials and Method: We supposed that the fiducial marker of gold, steel, titanium is located in 1.5, 2.5, 4.0, 6.0 cm from the proton beam's end of range using water phantom. Treatment plans were created by applying density override with the surrounding material and actual material of the fiducial marker. Also, a liver cancer patient who received proton therapy was selected. We located the fiducial marker of gold, steel, titanium in 0, 1.5, 3.5 cm from the proton beam's end of range and the treatment plans were created by same method with water phantom. Homogeneity Index(HI), Conformity Index(CI) and maximum dose of Organ At Risk(OAR) in Planning Target Volume(PTV) as the evaluation index were compared according to the material, position of the fiducial marker and number of beam. Results: The HI value was more decreased when density override with surrounding material of the fiducial marker was performed comparing with density override with actual material. Especially the HI value was increased when the fiducial marker was located farther from the proton beam's end of the range for a single beam and the fiducial marker's position was closer to isocenter for two or more beams. The CI value was close to 1 and OAR maximum dose was greatly reduced when density override with surrounding material of the fiducial marker was performed comparing with density override with actual material. Conclusion: Density override with surrounding material can be expected to achieve more precise proton therapy than density override with actual material of the fiducial marker and could increase the dose uniformity and target coverage and reduce the dose to surrounding normal tissues for the small fiducial markers used in clinical practice. Most of all, it is desirable to plan the treatment by avoiding the fiducial marker of metal material as much as possible. However, if the fiducial marker have on the beam path, density override of the surrounding material can be expected to achieve more precise proton therapy.

  • PDF