• Title/Summary/Keyword: redshift

Search Result 393, Processing Time 0.024 seconds

HIGH REDSHIFT GALAXY CLUSTERS IN ELIAS-N1/N2 FIELDS WITH A NEW COLOR SELECTION TECHNIQUE

  • HYUN, MINHEE;IM, MYUNGSHIN;KIM, JAE-WOO;LEE, SEONG-KOOK
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.409-411
    • /
    • 2015
  • Galaxy clusters, the largest gravitationally bound systems, are an important subject of study to place constraints on cosmological models. Moreover, they are excellent places to test galaxy evolution models in connection to their environments. To date, massive clusters have been found unexpectedly (Kang & Im 2009; Gonzales et al. 2012) and the evolution of galaxies in clusters is still controversial (Elbaz et al. 2007; Faloon et al. 2013). Finding galaxy cluster candidates at z > 1 in a wide, deep imaging survey data will enable us to solve such issues of modern extragalactic astronomy. We report new candidate galaxy clusters in one of the wide and deep survey fields, the European Large Area ISO Survey North1 (ELAIS-N1) and North2 (ELAIS-N2) fields, covering a sky area of $8.75deg^2$ and $4.85deg^2$ each. We also suggest a new useful color selection technique to separate z > 1 galaxies from low - z galaxies by combining multi-wavelength data.

FLY-BY ENCOUNTERS BETWEEN DARK MATTER HALOS IN COSMOLOGICAL SIMULATIONS

  • AN, SUNG-HO;KIM, JEONGHWAN H.;YUN, KIYUN;KIM, JUHAN;YOON, SUK-JIN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.331-333
    • /
    • 2015
  • Gravitational interactions - mergers and fly-by encounters - between galaxies play a key role as the drivers of their evolution. Here we perform a cosmological N-body simulation using the tree-particle-mesh code GOTPM, and attempt to separate out the effects of mergers and fly-bys between dark matter halos. Once close pair halos are identified by the halo finding algorithm PSB, they are classified into mergers ($E_{12}$ < 0) and fly-by encounters ($E_{12}$ > 0) based on the total energy ($E_{12}$) between two halos. The fly-by and merger fractions as functions of redshift, halo masses, and ambient environments are calculated and the result shows the following.(1) Among Milky-way sized halos ($0.33-2.0{\times}10^{12}h^{-1}M{\odot}$), $5.37{\pm}0.03%$ have experienced major fly-bys and $7.98{\pm}0.04%$ have undergone major mergers since z ~ 1; (2) Among dwarf halos ($0.1-0.33{\times}10^{12}h^{-1}M{\odot}$), $6.42{\pm}0.02%$ went through major fly-bys and $9.51{\pm}0.03%$ experienced major mergers since z ~ 1; (3) Milky-way sized halos in the cluster environment experienced fly-bys (mergers) 4-11(1.5-1.7) times more frequently than those in the field since z ~ 1; and (4) Approaching z = 0, the fly-by fraction decreases sharply with the merger fraction remaining constant, implying that the empirical pair/merger fractions (that decrease from z ~ 1) are in fact driven by the fly-bys, not by the mergers themselves.

WHAT MAKES A RADIO-AGN TICK? TRIGGERING AND FEEDING OF ACTIVE GALAXIES WITH STRONG RADIO JETS

  • KAROUZOS, MARIOS;IM, MYUNGSHIN;KIM, JAE-WOO;LEE, SEONG-KOOK;CHAPMAN, SCOTT
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.447-449
    • /
    • 2015
  • Although the link between activity in the nuclei of galaxy and galactic mergers has been under scrutiny for several years, it is still unclear to what extent and for which populations of active galaxies merger-triggered activity is relevant. The environments of AGN allow an indirect probe of the past merger history and future merger probability of these systems, suffering less from sensitivity issues when extended to higher redshifts than traditional morphological studies of AGN host galaxies. Here we present results from our investigation of the environment of radio selected sources out to a redshift z=2. We employ the first data release J-band catalog of the new near-IR Infrared Medium-Deep Survey (IMS), 1.4 GHz radio data from the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey and a deep dedicated VLA survey of the VIMOS field, covering a combined total of 20 sq. degrees. At a flux limit of the combined radio catalog of 0.1 mJy, we probe over 8 orders of magnitude of radio luminosity. Using the second closest neighbor density parameters, we test whether active galaxies inhabit denser environments. We find evidence for a sub-population of radio-selected AGN that reside in significantly overdense environments at small scales, although we do not find significant overdensities for the bulk of our sample. We show that radio-AGN in the most underdense environments have vigorous ongoing star formation. We interpret these results in terms of the triggering and fuelling mechanism of radio-AGN.

VOIDS LENSING OF THE CMB AT HIGH RESOLUTION

  • SANGKA, ANUT;SAWANGWIT, UTANE;SANGUANSAK, NUANWAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.397-399
    • /
    • 2015
  • Recently, cosmic voids have been recognized as a powerful cosmological probe. A number of studies have focused on the effects of the gravitational lensing by voids on the temperature (and in some cases polarization) anisotropy of the Cosmic Microwave Background (CMB) background at relatively large to medium scales, l ~ 1000. Many of these studies attempt to explain the unusually large cold spot in CMB temperature maps and dynamical evidence of dark energy via detections of late-time integrated Sachs Wolfe (ISW) effect. Here, the effects of lensing by voids on the CMB temperature anisotropy at small scales, up to l = 3000, will be investigated. This work is carried out in the light of the benefits of adding large catalogues of cosmic voids, to be identified by future large galaxy surveys such as EUCLID and LSST, to the analysis of CMB data such as those from Planck mission. Our numerical simulation utilizes two methods, namely, the small-de ectionangle approximation and full ray-tracing analysis. Using the fitted void density profiles and radius (RV ) distribution available in the literature from N-body simulations, we simulated the secondary temperature anisotropy (lensing) of CMB photons induced by voids along a line of sight from redshift 0 to 2. Each line of sight contains approximately 1000 voids of effective radius $RV_{,eff}=35h^{-1}Mpc$ with randomly distributed radial and projected positions. Both methods are used to generate temperature maps. The two methods will be compared for their accuracy and effciency in the implementation of theoretical modeling.

ON THE ASSEMBLY HISTORY OF STELLAR COMPONENTS IN MASSIVE GALAXIES

  • Lee, Jaehyun;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.73.2-73.2
    • /
    • 2012
  • Matusoka & Kawara (2010) showed that the number density of the most massive galaxies (log $M/M_{\odot}=11.5-12.0$) increases faster than that of the next massive group (log $M/M_{\odot}=11.0-11.5$) during 0 < z < 1. This appears to be in contradiction to another important empirical concept of "downsizing". We attempt to understand the two observational findings in the context of the hierarchical merger paradigm using semi-analytic techniques. Our models closely reproduce the result of Matusoka & Kawara (2010). Downsizing can also be understood as larger galaxies have on average smaller assembly ages but larger stellar ages. Our fiducial models further reveal the details on the history of stellar mass growth of massive galaxies. The most massive galaxies (log $M/M_{\odot}=11.5-12.0$ at z=0), which are mostly brightest cluster galaxies, obtain roughly 70% of their stellar components via merger accretion. The role of merger accretion monotonically declines with galaxy mass: 45% for log $M/M_{\odot}=11.0-11.5$ and 20% for log $M/M_{\odot}=10.5-11.0$ at z = 0. The specific accreted stellar mass rates via galaxy mergers decline very slowly during the whole redshift range, while the specific star formation rates sharply decrease with time. In the case of the most massive galaxies, merger accretion becomes the most important channel for the stellar mass growth at z ~ 2. On the other hand, in-situ star formation is always the dominant channel in the $L_*$ galaxies.

  • PDF

Observation of an Ellerman bomb and its associated surge with the 1.6 meter New Solar Telescope at Big Bear Solar Observatory

  • Yang, Heesu;Chae, Jongchul;Park, Hyungmin;Maurya, Ram Ajor;Cho, Kyuhyun;Kim, Yeon-Han;Cho, Il-Hyun;Lim, Eun-Kyung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.111.2-111.2
    • /
    • 2012
  • We observed an Ellerman bomb(EB) and its associated surge using the Fast Imaging Solar Spectrograph(FISS) and the broadband TiO filter of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory. As is well-known, the EB appears as a feature that is very bright at the far wings of the H alpha line. The lambdameter method applied to these wings indicates that the EB is blue-shifted up to 6km/s in velocity. In the photospheric level below the EB, we see rapidly growing "granule-like" feature. The transverse velocity of the dark lane at the edge of the "granule" increased with time as reached a peak of 6km/s, at the time of the EB's occurrence. The surge was seen in absorption and varied rapidly both in the H alpha and the Ca II 8542 line. It originated from the Ellerman bomb, and was impulsively accelerated to 20km/s toward us(blueshift). Then the velocity of the surge gradually changed from blueshift of 20km/s to redshift of 40km/s. By adopting the cloud model, we estimated the temperature of the surge material at about 27000K and the non-thermal velocity at about 10km/s. Our results shed light on the conventional idea that an EB results from the magnetic reconnection of an emerging flux tube and pre-existing field line.

  • PDF

The near infrared image of GRB100205A field

  • Kim, Yongjung;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.82.1-82.1
    • /
    • 2012
  • GRB100205A is a Gamma Ray Burst (GRB) which is suspected to be at redshift z=11-13 due to its very red H-K color($(H-K)_{vega}=2.1{\pm}0.5$). We observed a field centered at GRB100205A with Wide Field Camera (WFCAM) at United Kingdom Infrared Telescope (UKIRT) in Hawaii, in order to search a quasar that could be located around the GRB. The images were obtained in J, H, and K filters covering a square area of $0.78deg^2$. Our J-, H-, and K-band data reach the depths of 22.5, 22.1, and 21.0 mag (Vega) at $5{\sigma}$, respectively. Also using z-band image observed by CFHT, we find 8 candidates that have colors consistent with a quasar at z=11-13(non-detection in z-, J-band and $(H-K)_{vega}$ > 1.6). However, the shallow depths of J-, H-band are not enough to verify their true nature. Instead, we identify many red objects to be old or dusty galaxies at $z{\geq}3$. The number density of such objects appears about twice or more than that of the field of Cosmological Evolution Survey (COSMOS) and Ultra Deep Survey (UDS) of UKIRT Infrared deep sky survey (UKIDSS). On scales between 0.18' and 15' the correlation function is well described by a power law with an exponent of ${\approx}-0.9$ and this implies that those objects are like galaxies. It is interesting that many red galaxies exist in the region where the GRB was detected.

  • PDF

PROPERTIES OF THE SCUBA-2 850㎛ SOURCES IN THE XMM-LSS FIELD

  • Seo, Hyunjong;Jeong, Woong-Seob;Kim, Seong Jin;Pyo, Jeonghyun;Kim, Min Gyu;Ko, Jongwan;Kim, Minjin;Kim, Sam
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.1
    • /
    • pp.7-20
    • /
    • 2017
  • We carry out the study of $850{\mu}m$ sources in a part of the XMM-LSS field. The $850{\mu}m$ imaging data were obtained by the SCUBA-2 on the James Clerk Maxwell Telescope (JCMT) for three days in July 2015 with an integration time of 6.1 hours, covering a circular area with a radius of 15'. We choose the central area up to a radius of 9'.15 for the study, where the noise distribution is relatively uniform. The root mean square (rms) noise at the center is 2.7 mJy. We identify 17 sources with S/N > 3.5. Differential number count is estimated in flux range between 3.5 and 9.0 mJy after applying various corrections derived by imaging simulations, which is consistent with previous studies. For detailed study on the individual sources, we select three sources with more reliable measurements (S/N > 4.5), and construct their spectral energy distributions (SEDs) from optical to far-infrared band. Redshift distribution of the sources ranges from 0.36 to 3.28, and their physical parameters are extracted using MAGPHYS model, which yield infrared luminosity $L_{IR}=10^{11.3}-10^{13.4}L_{\odot}$, star formation rate $SFR=10^{1.3}-10^{3.2}M_{\odot}yr^{-1}$ and dust temperature $T_D=30-53K$. We investigate the correlation between $L_{IR}$ and $T_D$, which appears to be consistent with previous studies.

Optical Properties of Ag@Fe3O4 Core-Shell Nanoparticles (Ag@Fe3O4 코어-쉘 나노입자의 광학적 특성)

  • Song, Younseong;Koh, Kwangnak;Kim, Kyujung;Lee, Jaebeom
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.3
    • /
    • pp.97-102
    • /
    • 2017
  • In this paper, we investigate the optical properties of $Ag@Fe_3O_4$ nanoparticles (NPs) composed of a plasmonic core and a magnetic shell. As the $Fe_3O_4$ shell with high refractive index (~2.42) is formed on the surface of the silver NPs having diameter of 60 nm, the wavelength of the localized surface-plasmon resonance (LSPR) is shifted from 420 nm to 650 nm, a so-called "redshift". Furthermore, through the use of three simulation models ($Ag@Fe_3O_4$ NP, $Fe_3O_4$ shell NP, and silver NP), the peak at 410 nm is seen to be the result of scattering by the $Fe_3O_4$ shell with 60 nm thickness, which would be useful in comprehending the complex optics in various nanoscale assemblies using similar NPs.

The Infrared Medium-deep Survey. VI. Discovery of Faint Quasars at z ~ 5 with a Medium-band-based Approach

  • Kim, Yongjung;Im, Myungshin;Jeon, Yiseul;Kim, Minjin;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.37.1-37.1
    • /
    • 2019
  • The faint quasars with M1450 > -24 mag are known to hold the key to the determination of the ultraviolet emissivity for the cosmic reionization. But only a few have been identified so far because of the limitations on the survey data. Here we present the first results of the z ~ 5 faint quasar survey with the Infrared Medium-deep Survey (IMS), which covers ${\sim}100deg^2$ areas in J band to the depths of $J_{AB}$ ~ 23 mag. To improve selection methods, the medium-band follow-up imaging has been carried out using the SED camera for QUasars in Early uNiverse (SQUEAN) on the Otto Struve 2.1 m Telescope. The optical spectra of the candidates were obtained with 8 m class telescopes. We newly discovered 10 quasars with -25 < $M_{1450}$ < -23 at z ~ 5, among which three have been missed in a previous survey using the same optical data over the same area, implying the necessity for improvements in high-redshift faint quasar selection. We derived photometric redshifts from the medium-band data and found that they have high accuracies of ${\langle}{\mid}{\Delta}z{\mid}/(1+z){\rangle}=0.016$. The medium-band-based approach allows us to rule out many of the interlopers that contaminate ${\geq}20%$ of the broadband-selected quasar candidates. These results suggest that the medium-band-based approach is a powerful way to identify z ~ 5 quasars and measure their redshifts at high accuracy (1%-2%). It is also a cost-effective way to understand the contribution of quasars to the cosmic reionization history.

  • PDF