Browse > Article
http://dx.doi.org/10.3807/KJOP.2017.28.3.097

Optical Properties of Ag@Fe3O4 Core-Shell Nanoparticles  

Song, Younseong (Department of Cogno-Mechatronics Engineering, Pusan National University)
Koh, Kwangnak (Institute of General Education, Pusan National University)
Kim, Kyujung (Department of Cogno-Mechatronics Engineering, Pusan National University)
Lee, Jaebeom (Department of Cogno-Mechatronics Engineering, Pusan National University)
Publication Information
Korean Journal of Optics and Photonics / v.28, no.3, 2017 , pp. 97-102 More about this Journal
Abstract
In this paper, we investigate the optical properties of $Ag@Fe_3O_4$ nanoparticles (NPs) composed of a plasmonic core and a magnetic shell. As the $Fe_3O_4$ shell with high refractive index (~2.42) is formed on the surface of the silver NPs having diameter of 60 nm, the wavelength of the localized surface-plasmon resonance (LSPR) is shifted from 420 nm to 650 nm, a so-called "redshift". Furthermore, through the use of three simulation models ($Ag@Fe_3O_4$ NP, $Fe_3O_4$ shell NP, and silver NP), the peak at 410 nm is seen to be the result of scattering by the $Fe_3O_4$ shell with 60 nm thickness, which would be useful in comprehending the complex optics in various nanoscale assemblies using similar NPs.
Keywords
Core-shell; Plasmonics; Magnetism; Localized surface plasmon resonance; Simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. B. Gonzalez-Diaz, A. Garcia-Martin, G. Armelles, D. Navas, M. Vazquez, K. Nielsch, R. B. Wehrspohn, and U. Gosele, "Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays," Advanced Materials 19, 2643-2647 (2007).   DOI
2 G. Armelles, A. Cebollada, A. Garciia-Martiuin, J. Montero-Moreno, M. Waleczek, and K. Nielsch, "Magneto-optical properties of core-shell magneto-plasmonic $Au-Co_xFe_{3-x}O_4$ Nanowires," Langmuir 28, 9127-9130 (2012).   DOI
3 P. B. Johnson and R.-W. Christy, "Optical constants of the noble metals," Physical review B 6, 4370 (1972).   DOI
4 X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, "Plasmonic photocatalysis," Reports on Progress in Physics 76, 046401 (2013).   DOI
5 C. Hanske, M. Tebbe, C. Kuttner, V. Bieber, V. V. Tsukruk, M. Chanana, T. A. Konig, and A. Fery, "Strongly coupled plasmonic modes on macroscopic areas via template-assisted colloidal self-assembly," Nano letters 14, 6863-6871 (2014).   DOI
6 D. Stuart, A. Haes, C. Yonzon, E. Hicks, and R. Van Duyne, "Biological applications of localised surface plasmonic phenomenae," in IEE Proceedings-Nanobiotechnology, (IET, 2005), 13-32.
7 G. Barbillon, J. L. Bijeon, J. S. Bouillard, J. Plain, M. Lamy De la Chapelle, P. M. ADAM, and P. Royer, "Detection in near-field domain of biomolecules adsorbed on a single metallic nanoparticle," Journal of Microscopy 229, 270-274 (2008).   DOI
8 G. Barbillon, A. C. Faure, N. El Kork, P. Moretti, S. Roux, O. Tillement, M. Ou, A. Descamps, P. Perriat, and A. Vial, "How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence," Nanotechnology 19, 035705 (2007).
9 O. Kedem, A. B. Tesler, A. Vaskevich, and I. Rubinstein, "Sensitivity and optimization of localized surface plasmon resonance transducers," ACS Nano 5, 748-760 (2011).   DOI
10 E. Petryayeva and U. J. Krull, "Localized surface plasmon resonance: nanostructures, bioassays and biosensing-a review," Analytica chimica acta 706, 8-24 (2011).   DOI
11 S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, 2007).
12 S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," Journal of Applied Physics 98, 011101 (2005).   DOI
13 Z. Xu, Y. Hou, and S. Sun, "Magnetic core/shell $Fe_3O_4/Au$ and $Fe_3O_4/Au/Ag$ nanoparticles with tunable plasmonic properties," Journal of the American Chemical Society 129, 8698-8699 (2007).   DOI
14 W. Jiang, Y. Zhou, Y. Zhang, S. Xuan, and X. Gong, "Superparamagnetic $Ag@Fe_3O_4$ core-shell nanospheres:fabrication, characterization and application as reusable nanocatalysts," Dalton Transactions 41, 4594-4601 (2012).   DOI
15 Y. Li, Q. Zhang, A. V. Nurmikko, and S. Sun, "Enhanced magnetooptical response in dumbbell-like $Ag-CoFe_2O_4$ nanoparticle pairs," Nano letters 5, 1689-1692 (2005).   DOI
16 J. Bao, W. Chen, T. Liu, Y. Zhu, P. Jin, L. Wang, J. Liu, Y. Wei, and Y. Li, "Bifunctional $Au-Fe_3O_4$ nanoparticles for protein separation," Acs Nano 1, 293-298 (2007).   DOI
17 A. Mezni, I. Balti, A. Mlayah, N. Jouini, and L. S. Smiri, "Hybrid $Au-Fe_3O_4$ nanoparticles: plasmonic, surface enhanced Raman scattering, and phase transition properties," The Journal of Physical Chemistry C 117, 16166-16174 (2013).   DOI
18 J. T. Seil and T. J. Webster, "Antimicrobial applications of nanotechnology: methods and literature," Int J Nanomedicine7, 2767-2781 (2012).
19 S. Vaidya, A. Kar, A. Patra, and A. K. Ganguli, "Core-Shell (CS) nanostructures and their application based on magnetic and optical properties," Reviews in Nanoscience and Nanotechnology 2, 106-126 (2013).   DOI
20 M. Brollo, J. Orozco-Henao, R. Lopez-Ruiz, D. Muraca, C. Dias, K. Pirota, and M. Knobel, "Magnetic hyperthermia in brick-like $Ag@Fe_3O_4$ core-shell nanoparticles," Journal of Magnetism and Magnetic Materials 397, 20-27 (2016).   DOI
21 Y. Zhang, H. Ding, Y. Liu, S. Pan, Y. Luo, and G. Li, "Facile one-step synthesis of plasmonic/magnetic core/shell nanostructures and their multifunctionality," Journal of Materials Chemistry 22, 10779-10786 (2012).   DOI