• Title/Summary/Keyword: redox electrolyte

Search Result 148, Processing Time 0.024 seconds

Electrochemical Properties of Polypyrrole-Glucose Oxidase Enzyme Electrode Depending on Dopant Size (Polypyrrole-Glucose Oxidase 효소전극의 배위자 크기에 따른 전기 화학적 특성)

  • 김현철;구할본;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.745-748
    • /
    • 2001
  • We synthesized polypyrrole (PPy) by electrolysis of the pyrrole monomer solution containing support electrolyte KCl and/or p-toluene sulfonic acid sodium salt (p-TS). The electrochemical behavior was investigated using cyclic voltammetry and AC impedance. In the case of using electrolyte p-TS, the redox potential was about -0.3 V vs. Ag/AgCl reference electrode, while the potential was about 0 V for using electrolyte KCl. It is considered as the backbone forms a queue effectively by doping p-T S. Therefore, it is possible to be arranged regularly. That leads to improvement in the electron hopping. The AC impedance plot gave a hint of betterment of mass transport. PPy doped with p-TS has improved in mass transport, or diffusion. That is because the PPy doped with p-TS has a good orientation, and is more porous than PPy with KCl.

  • PDF

Electrochemical Properties of Polypyrrole Enzyme Electrode Immobilized Glucose Oxidase with Different Ligand (포도당 산화효소를 고정화한 Polypyrrole 효소전극의 배위자 변화에 다른 전기화학적 특성)

  • Kim, Hyun-Cheol;Gu, Han-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.529-532
    • /
    • 2001
  • We synthesized polypyrrole (PPy) by electrolysis of the pyrrole monomer solution containing support electrolyte KCl and/or p-toluene sulfonic acid sodium salt (p-TS). The electrochemical behavior was investigated using cyclic voltammetry and AC impedance. In the case of using electrolyte p-TS, the redox potential was about -0.3 V vs. Ag/ AgCl reference electrode, while the potential was about 0 V for using electrolyte KCl. It is considered as the backbone forms a queue effectively by doping p-TS Therefore, it is possible to be arranged regularly. That leads to improvement in the electron hopping. The AC impedance plot gave a hint of betterment of mass transport. PPy doped with p-TS has improved in mass transport, or diffusion. That is because the PPy doped with p-TS has a good orientation, and is more porous than PPy with KCl.

  • PDF

Electrochemical Properties of Polypyrrole Enzyme Electrode Immobilized Glucose Oxidase with Different Ligand (포도당 산화효소를 고정화한 Polypyrrole 효소전극의 배위자 변화에 따른 전기화학적 특성)

  • 김현철;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.529-532
    • /
    • 2001
  • We synthesized polypyrrole (PPy) by electrolysis of the pyrrole monomer solution containing support electrolyte KCl and/or p-toluene sulfonic acid sodium salt (p-TS). The electrochemical behavior was investigated using cyclic voltammetry and AC impedance. In the case of using electrolyte p-75, the redox potential was about -0.3 V vs. Ag/AgCl reference electrode, while the potential was about 0 V for using electrolyte KCl. It is considered as the backbone forms a queue effectively by doping p-TS Therefore, it is possible to be arranged regularly. That leads to improvement in the electron hopping. The AC impedance plot gave a tent of betterment of mass transport. PPy doped with p-TS has improved in mass transport, or diffusion. That is because the PPy doped with p-TS has a good orientation, and is more porous than PPy with KCl.

  • PDF

Electrochemical properties of Pt electrodes fabricated by other methode as counter electrode of DSC (염료감응형 태양전지의 상대전극용 Pt의 제조방법에 따른 전기화학적 특성)

  • Kim, Hyun-Ju;Lee, Dong-Yun;Koo, Bo-Kun;Lee, Won-Jae;Song, Jae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2016-2018
    • /
    • 2005
  • Dye-sensitized solar cell (DSC) consist of oxidation semiconduction electrode, electrolyte and counter electrode. Among these, Pt as counter electrode of DSC plays a role in helping redox reaction of iodine ions in electrolyte, also, transferring electrons into electrolyte. In this case, it is expected that characteristics of Pt electrodes strongly depend on fabrication process and its surface condition. In this study, electrochemical behavior of the electro-plated Pt electrode was compared with that of the sputtered Pt electrode, using cyclic-voltammetry and impedance spectroscopy (PARSTATE 2273, by AMETEK). Surface morphology of Pt electrode was investigated by AFM (XE-100, by PSIA). As a result, it was considered that electrochemical properties of sputtered Pt electrode is superior to that of electro-plated Pt electrode.

  • PDF

Sputtered ZTO as a blocking layer at conducting glass and $TiO_2$ Interfaces in Dye-Sensitized Solar Cells (GZO/ZTO 투명전극을 이용한 DSSC의 광전 변환 효율 특성)

  • Park, Jaeho;Lee, Kyungju;Song, Sangwoo;Jo, Seulki;Moon, Byungmoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • Dye-sensitized solar cells(DSSCs) have been recognized as an alternative to the conventional p-n junction solar cells because of their simple fabrication process, low production cost, and transparency. A typical DSSC consists of a transparent conductive oxide (TCO) electrode, a dye-sensitized oxide semiconductor nanoparticle layer, liquid redox electrolyte, and a Pt-counter electrode. In dye-sensitized solar cells, charge recombination processes at interfaces between coducting glass, $TiO_2$, dye, and electrolyte play an important role in limiting the photon-to-electron conversion efficiency. A layer of ZTO thin film less than ~200nm in thickness, as a blocking layer, was deposited by DC magnetron sputtering method directly onto the anode electrode to be isolated from the electrolyte in dye-sensitized solar cells(DSCs). This is to prevent the electrons from back-transferring from the electrode to the electrolyte ($I^-/I_3^-$). The presented DSCs were fabricated with working electrode of Ga-doped ZnO glass coated with blocking ZTO layer, dye-attached nanoporous $TiO_2$ layer, gel electrolyte and counter electrode of Pt-deposited GZO glass. The effects of blocking layer were studied with respect to impedance and conversion efficiency of the cells.

  • PDF

A Study on the Electrochemical Performance of Fe-V Chloric/Sulfuric Mixed Acid Redox Flow Battery Depending on Electrode Activation Temperature (Fe-V Chloric/Sulfuric Mixed Acid 레독스흐름전지 전극의 활성화 온도에 따른 전기화학적 성능 고찰)

  • Lee, Han Eol;Kim, Dae Eop;Kim, Cheol Joong;Kim, Taekeun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.639-645
    • /
    • 2020
  • Among the components of redox flow battery (RFB), the electrode serves as a diffusion layer of an electrolyte and a path for electrons and also is a major component that directly affects the RFB performance. In this paper, chloric/sulfuric mixed acidwas used as a supporting electrolyte in RFB system with Fe2+/Fe3+ and V2+/V3+ as redox couple. The optimum electrode and activation temperature were suggested by comparing the capacity, coulombic efficiency and energy efficiency according to the electrode type and activation temperature. In the RFB single cell evaluation using 5 types of carbon electrodes used in the experiments, all of them showed close to the theoretical capacity to retain the reliability of the evaluation results. GFD4EA showed relatively excellent energy efficiency and charge/discharge capacity. In order to investigate the electrochemical performance according to the activation temperature, GFD4EA electrode was activated by heat treatment at different temperatures of 400, 450, 500, 600 and 700 ℃ under an air atmosphere. Changes in physical properties before and after the activation were observed using electrode mass retention, scanning electron microscope (SEM), XPS analysis, and electrochemical performance was compared by conducting RFB single evaluation using electrodes activated at each temperature given above.

Origin of Nonlinear Device Performance with Illuminated Sun Intensity in Mesoscopic Sb2S3-sensitized Photoelectrochemical Solar Cells using Cobalt Electrolyte

  • Im, Sang-Hyuk;Lee, Yong-Hui;Kim, Hi-Jung;Lim, Choong-Sun;Kang, Yong-Ku;Seok, Sang-Il
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.174-179
    • /
    • 2011
  • The mesoscopic $Sb_2S_3$-sensitized photoelectrochemical solar cells using cobalt redox electrolyte exhibit nonlinear behavior of power conversion efficiency with illuminated sun intensity. From the measurement of bulk diffusion and electrochemical impedance spectroscopy studies, we suggest that the nonlinearity of device performance with illuminated sun intensity is attributed not to the slow bulk diffusion problem of cobalt electrolyte but to the limited mass transport in narrowed pore volume in mesoscopic $TiO_2$ electrode.

Experimental Investigation on High Efficient Electrolytes of Electrochemical Photovoltaic Cells (전기화학형 광전변환 셀의 고효율 전해질 제작에 관한 실험적 고찰)

  • Kim, Doo-Hwan;Han, Chi-Hwan;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.100-104
    • /
    • 2011
  • In this work, an optimum condition of electrolytes preparation for photovoltaic cells application was investigated experimentally in terms of impedance and conversion efficiency of the cells. 3-methoxyppropionitrie and redox pairs with LiI and $I_2$ were used as stable solvents for fabrication of electrolyte. Efficiency comparison of the prepared cells carried out for various additives and ionic liquids. From the results, there was an optimum concentration (about 0.3 M) of ionic liquids for efficient cell fabrication. For case of electrolyte using single DMAp additive, the maximum conversion efficiency of the cell was 6.4%($V_{oc}$: 0.78V, $J_{sc}$: 14.4 mA/$cm^2$, ff: 0.57). For case of electrolyte using both DMAp and CEMim additives, the maximum conversion efficiency of the cell was 7.2%($V_{oc}$: 0.79V, $J_{sc}$: 16 mA/$cm^2$, ff: 0.57). From the result of electrochemical impedance measurement, both Z1 and Z3 values of binary additives-based cell decreased compared to those of single additive-based. This is due to the decreased in internal and charge transfer resistivities of the cells.

Study of Enhanced Photovoltaic Performance with Optimized Electrolytes and Blocking Layer Formation (차단막 형성과 전해질의 최적화에 의한 광전변환 효율 개선 연구)

  • Park, Hee-Dae;Joo, Bong-Hyun;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.50-54
    • /
    • 2013
  • In this work, the effects of blocking layer and optimally fabricated electrolyte were investigated with respect to impedance and conversion efficiency of the cells.A layer of $TiO_2$ less than ~200nm in thickness, as a blocking layer, was deposited by rf sputtering onto the F:$SnO_2$ (FTO) glass to be isolated from the electrolyte in dye-sensitized solar cells (DSCs). Also, optimum condition of electrolytes preparation for DSCs was investigated. 3-methoxyppropionitrie and redox pairs with LiI and $I_2$ were used as solvents for fabrication of electrolyte. The electrochemical impedances of DSCs using this photo-anode were $R_1$: 13.8, $R_2$: 15.1, $R_3$: 11.9 and $R_h$: $8.3{\Omega}$, respectively. The $R_2$ impedance related by electron transportation from porous $TiO_2$ to FTO showed lower than that of normal DSCs. The photo-conversion efficiency of prepared DSCs was 6.4% and approximately 1.3% higher than general one.

Study of the Electrochemical Redox Characteristics of Some Triazolopyrimidines

  • Maghraby, A.A. El;Elenien, G.M. Abou;Shehata, K.I.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.159-168
    • /
    • 2007
  • An electrochemical study related to the redox characteristics of Ethyl-3-acetyl-6-methyl-1, 4-diphenyl-4, 3a-dihydro-1, 3, 4-triazolino[3, 4-a] pyrimidine-5-carboxylate ester and its derivatives (1a-f) and (2a-e) in nonaqueous solvents such as 1, 2-dichloroethane (DCE), dichloromethane (DCM), acetonitrile (AN), dimethylsulphoxide (DMSO) and tetrahydrofurane (THF) using $0.1\;mol\;dm^{-3}$ tetrabutylammonium perchlorate (TBAP) as a supporting electrolyte at platinum, glassy carbon and gold electrodes, has been performed using cyclic voltammetry (CV). Controlled potential electrolysis (CPE) is also carried out to elucidate the course of different electrochemical reactions through the separation and identification of the intermediates and final electrolysis products. The redox mechanism is suggested and proved. It was found that all the investigated compounds in all solvents are oxidized in a single irreversible one electron donating process following the well known pattern of the EC-mechanism to give a dimer. On the other hand, these compounds are reduced in a single irreversible one electron step to form the anion radical, which is basic enough to proton from the media forming the radical which undergoes tautomerization and then dimerization processes to give also another bis-compound through N-N linkage formation.