• Title/Summary/Keyword: redox current

Search Result 177, Processing Time 0.045 seconds

Electrochemical Properties and Fabrication of Conjugated System Conducting Oligomer Self-assembled Monolayer (공액구조 전도성 올리고머 자기조립단분자막의 제작 및 전기화학적 특성)

  • Min, Hyun Sik;Lee, Tae Yeon;Oh, Se Young
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.545-550
    • /
    • 2011
  • We have synthesized a high electrically conductive 4-(2-(4-(acetylthio)phenyl)ethynyl)benzoic acid (APBA) with a conjugated aromatic structure as a bio fix linker, and then fabricated APBA self-assembled monolayer (SAM) with a self-assembly technique. The structure of the prepared APBA SAM was studied and electrochemical properties of APBA SAM immobilized with a ferrocene molecule were investigated. Also, we have examined the molecular orientation and oxidation-reduction redox characteristics of the mixed SAM consisting of APBA and butanethiol (BT) with a X-ray photo electron spectroscopy (XPS) and cyclicvoltammetry, respectively. Electrochemical activity of the mixed SAM was increased with increasing the mixed time. Especially, the maximum redox current was obtained at a mixed time of 36 hrs.

Anti-inflammatory Action of Calorie Restriction for Life-Prolongation: A Possible Mechanism

  • Chung, Hae-Young
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.173-174
    • /
    • 2002
  • Oxidative modification of cellular structures and functions by redox imbalance is the basis of the current oxidative stress hypothesis of aging. The experimental support for this hypothsis has been generated from recent molecular probing on the interrelation between the age-related functional impairments and the pathogenesis. (omitted)

  • PDF

Reset-first Resistance Switching Mechanism of HfO2 Films Based on Redox Reaction with Oxygen Drift-Diffusion

  • Kim, Jong-Gi;Lee, Sung-Hoon;Lee, Kyu-Min;Na, Hee-Do;Kim, Young-Jae;Ko, Dae-Hong;Sohn, Hyun-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.286-287
    • /
    • 2012
  • Reset-first resistive switching mechanism based on reduction reaction in HfO2-x with oxygen drift-diffusion was studied. we first report that the indirect evidence of local filamentary conductive path formation in bulk HfO2 film with local TiOx region at Ti top electrode formed during forming process and presence of anion-migration at interface between electrode and HfO2 during resistive switching through high resolution transmission electron microscopy (HRTEM), electron disperse x-ray (EDX), and electron energy loss spectroscopy (EELS) mapping. Based on forming process mechanism, we expected that redox reaction from Ti/HfO2 to TiOx/HfO2-x was responsible for an increase of initial current with increasing the post-annealing process. First-reset resistive switching in above $350^{\circ}C$ annealed Ti/HfO2 film was exhibited and the redox phenomenon from Ti/HfO2 to TiOx/HfO2-x was observed with high angle annular dark field (HAADF) - scanning transmission electron microscopy (STEM), EDX and x-ray photoelectron spectroscopy. Therefore, we demonstrated that the migration of oxygen ions at interface region under external electrical bias contributed to bipolar resistive switching behavior.

  • PDF

Characterization of Commercial Membranes for Non-aqueous Vanadium Redox Flow Battery (비수계 바나듐 레독스 흐름 전지를 위한 상용 멤브레인의 특성분석)

  • Sung, Ki-Won;Shin, Sung-Hee;Moon, Seung-Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.615-621
    • /
    • 2013
  • Membrane characterization methods for aqueous redox flow batteries aqueous RFBs were modified for non-aqueous RFBs. The modified characterization methods, such as ion exchange capacity, transport number, permeability and single cell test, were carried out to evaluate commercial membranes in non-aqueous electrolyte. It was found that columbic efficiency and energy efficiency in a single cell test were dependent on the ion selectivity of commercial anion exchange membranes. Neosepta AHA anion exchange membrane showed the anion transport number of 0.81, which is a relatively low ion selectivity in non-aqueous electrolyte, however, exhibited 92% of coulombic efficiency and 86% of energy efficiency in a single cell test. It was also found that a porous membrane without ion selectivity is suitable for a non-aqueous redox flow battery at a high current density.

Energy Efficiency Improvement of Vanadium Redox Flow Battery by Integrating Electrode and Bipolar Plate

  • Kim, Min-Young;Kang, Byeong-Su;Park, Sang-Jun;Lim, Jinsub;Hong, Youngsun;Han, Jong-Hun;Kim, Ho-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.330-338
    • /
    • 2021
  • An integral electrode-bipolar plate assembly, which is composed of electrode, conductive adhesive film (CAF) and bipolar plate, has been developed and evaluated for application with a vanadium redox flow battery (VRB) to decrease contact resistance between electrode and bipolar plate. The CAF, made of EVA (ethylene-vinyl-acetate) material with carbon black or CNT (Carbon Nano Tube), is applied between the electrode and the bipolar plate to enable an integral assembly by adhesion. In order to evaluate the integral assembly of VRB by adhesive film, the resistivity of integral assembly and the performance of single cell were investigated. Thus, it was verified that the integral assembly is applicable to redox flow battery. Through resistance and contact resistance of bare EVA and CAF films on bipolar plate were changed. Among the adhesive films, CAF film coated with carbon black showed the lowest value in through resistance, and CAF film coated with CNT showed the lowest value in contact resistance, respectively. The efficiency of VRB single cell was improved by applying CAF films coated with carbon black and CNT, resulting in the reduced overvoltage in charging process. Therefore, the energy efficiency of both CAF films, about 84%, were improved than that of blank cell, about 79.5 % under current density at 40 mA cm-2. The energy efficiency of the two cells were similar, but carbon black coated CAF improved the coulomb efficiency and CNT coated CAF improved the voltage efficiency, respectively.

Effects of Iron on Arsenic Speciation and Redox Chemistry in Acid Mine Water

  • Bednar A.J.;Garbarino J.R.;Ranville J.F.;Wildeman T.R.
    • Proceedings of the KSEEG Conference
    • /
    • 2004.12a
    • /
    • pp.9-28
    • /
    • 2004
  • Concern about arsenic is increasing throughout the world, including areas of the United States. Elevated levels of arsenic above current drinking-water regulations in ground and surface water can be the result of purely natural phenomena, but often are due to anthropogenic activities, such as mining and agriculture. The current study correlates arsenic speciation in acid mine drainage and mining influenced water with the important water-chemistry properties Eh, pH, and iron(III) concentration. The results show that arsenic speciation is generally in equilibrium with iron chemistry in low pH AMD, which is often not the case in other natural-water matrices. High pH mine waters and groundwater do not 짐ways hold to the redox predictions as well as low pH AMD samples. The oxidation and precipitation of oxyhydroxides depletes iron from some systems, and this also affects arsenite and arsenate concentrations differently through sorption processes.

  • PDF

Electrochemical Approach in Plasma Display Panel Glass Melts doped with Sulfate and Sulfide II. Square Wave Voltammetry

  • Kim, Ki-Dong
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.7
    • /
    • pp.375-379
    • /
    • 2008
  • Redox behavior was observed in alkali alkaline earth silicate PDP (Plasma Display Panel) glass melts doped with sulfate and sulfide by square wave voltammetry (SWV). According to voltammograms produced at a temperature range of 1100 to $1400^{\circ}C$ and frequency range of 5 to 1000 Hz, both melts showed the same behavior in which there is one reduction peak at low frequency but another peak at an increase of frequency. Based on the frequency dependence of the peak current, self diffusivity of $S^{4+}$ was determined. Based on the temperature dependence of the peak potential, standard enthalpy (${\Delta}H^0$) and standard entropy (${\Delta}S^0$) for the reduction of $S^{4+}$ to $S^0$ were calculated.

Research for Electrochemical Properties by Surface Treatment of Bipolar Plate in Redox Flow Battery (레독스 플로우 배터리용 Bipolar plate의 표면 처리를 통한 전기화학적 성능 연구)

  • Han, Jae-Jin;Choe, Jin-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.338-338
    • /
    • 2015
  • VRFB(Vanadium Redox Flow Battery)는 바나듐계 이온을 전해질로 사용하는 레독스 흐름 전지로, 전해질의 양이 전지의 용량을 결정하기 때문에 주로 대용량의 전력이 필요한 플랜트 등에서 주로 사용하는 전지이다. 이 VRFB내에는 Current collector의 부식 방지용으로 두꺼운 Graphite판을 BP(Bipolar plate)로 사용한다. 플랜트에서는 대용량 전지를 필요로 하여 Single stack으로는 사용되기 어렵고, Multi stack으로 주로 사용한다. Multi stack의 경우, 수 백장의 BP가 들어가 전지의 부피가 매우 커지게 되고, 이에 본 연구에서는 BP의 두꺼운 Graphite를 얇은 $TiO_2$ 기판으로 교체하여 성능을 비교하는 연구를 진행하였다. Ti 금속기판을 양극산화법으로 $TiO_2$ 나노튜브 구조를 만든 후, $TiO_2$의 전도도 향상을 목적으로 $IrO_2$를 코팅하였다. 결과적으로 기존의 Graphite에 비해 전기화학적 특성이 향상되었음을 확인하였으며, Cell test를 통해 VRFB의 성능을 평가하였다.

  • PDF

An Electrochemical Detector Using Prussian Blue Electrodeposited Indium Tin Oxide Electrode (Prussian blue가 전착된 indium tin oxide 전극을 이용한 전기화학적 검출기)

  • Yi, In-Je;Kim, Ju-Ho;Kang, Chi-Jung;Kim, Yong-Sang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.10
    • /
    • pp.449-452
    • /
    • 2005
  • We fabricated an electrochemical detector (ECD) to catalyze redox reaction efficiently by electrodepositing Prussian blue (PB) on the indium tin oxide (ITO) electrode. Capillary electrophoresis (CE) and amperometric method were used. We investigated the PB surface properties by topography from atomic force microscopy (AFM). Also PB film thickness calibration with respect to deposition time and voltage was used to get better PB surFace. The PB thin film of dense and smooth surface could catalyze redox reaction efficiently. Comparing with CE-ECD microchip using bare-lTO electrode, proposed CE-ECD microchip using PB deposited electrode has shown better sensitivity by determining the detected peak current from the electropherograms while the concentration of tested analyzes was maintained the same. It is verified that detection limit can be lowered for 0.01 mM of dopamine and catechol respectively.