• Title/Summary/Keyword: redox current

Search Result 177, Processing Time 0.023 seconds

Study on Redox State of Environmental Pollutant

  • Choi, Chi-Nami;Yang, Hyo-Kyung;Na, Eun-Jung
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_2
    • /
    • pp.65-71
    • /
    • 2001
  • The chemical behavior and properties related to the redox state of environmental pollutants were investigated using electrochemical methods. Measurements were taken of variations in the redox potential and cyclic polarization current. The results established the influence of various factors, including concentration, temperature, salt, and pH, on the redox potential and current. These factors were determined to effect the result of the redox reaction. Optimum conditions were also established for each case. It was clearly established that the electrode reaction was from a reversible to an irreversible process, plus it was also mixing reaction current controlled.

  • PDF

Electrochemical Signal Amplification by Redox Cycling in Distance-Controlled Nanogap Devices

  • Park, Dae Keun;Park, Jong Mo;Shin, Jong-Hwan;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.269-269
    • /
    • 2013
  • Redox cycling in between the two working electrodes in an electrochemical cell can lead a great signal enhancement. In this work, we report on a systematic examination of current amplification along with the decrease in the gap distance of a nanogap device which was fabricated by the combination of photo and chemical lithography [1]. The gap distance was controlled by the chemical lithographic process of surfacecatalyzed growth of metallic layer on pre-defined electrodes with wider initial gap. Enhancement of the redox current of ferri/ferrocyanide was observed upon gap distance reduction and the current is amplified about a thousand times in this redox system when the gap distance was decreased from 200 nm to 30 nm. The experimental results were discussed on the basis of the cyclic voltammetry (CV), atomic force microscopy (AFM) and scanning electron microscopy (SEM).

  • PDF

Electrochemical Signal Amplification by Gap Electrodes and Control of Gap Distances

  • Park, Dae Keun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.197-200
    • /
    • 2019
  • We report on electrochemical signal amplification using gap electrodes based on the redox cycling between gap electrodes. The distance between electrodes was controlled from $2{\mu}m$ to a few hundreds of nanometer by chemical deposition of reduced Au ion on the pre-defined electrodes. Enhanced redox current of ferri/ferrocyanide was obtained by redox cycling between the two working electrodes. The faradaic current is amplified about a thousand times in this redox system. Since the signal amplification is due to the shortened diffusion length between the two electrodes, the narrower the nanogap was, the better detection limit, calibration sensitivity, and dynamic range. The experimental results were discussed on the basis of the cyclic voltammetry (CV), atomic force microscope (AFM) and scanning electron microscope (SEM) measurements.

Study on Electrochemical Properties of TBT(Tributyltin)

  • Park, Chil-Nam;Yang, Hyo-Kyung
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_4
    • /
    • pp.173-179
    • /
    • 2001
  • The chemical behavior and properties of the redox state of environmental pollutants was investigated using electrochemical methods. The purpose was to measure the variations in the redox reaction of differential pulse polarograms and cyclic voltammograms. The results observed the influences on redox potential and current of various factors including concentration, temperature, salt, and pH. These were established factors as the effect of the redox reaction. It can be clearly recognized that the electrode reaction are from reversible to irreversible processes. Also, it was mixing with reaction current controlled.

  • PDF

Chemical Properties of Co(II) Compound Containing Endocrine Disrupter, Bis-Phenol A

  • Park, Chil-Nam
    • Journal of Environmental Science International
    • /
    • v.11 no.2
    • /
    • pp.131-137
    • /
    • 2002
  • The chemical behavior and properties on the redox state of environmental pollutant has been investigated by electrochemical methods. We carried out to measure the variations in the redox reaction of differential pulse polarogram and cyclic voltammogram. The results observed the influences on redox potential and current of various factors with temperature and pH. These were established factors as the effect of the redox reaction. It can be clearly recognized that the electrode reaction are from qusi-reversible to irreversible processes. Also, it was mixing with reaction current controlled. The bits-phenol A in the waste water was made to compound with cobalt ion and it take away from the separation into compound. The $Co(BPA)_2$ compound was not found to be dissociation in waste water. However, this compound is avery unstable(K=1.02) and for a while, it was to be a dissociation. Therefore, we believed that it was likely to a toxic substance.

Electrochemical Properties of Current Collector in the All-vanadium Redox Flow Battery (바나듐 레독스-흐름 전지에서 집전체의 전기화학적 특성)

  • Hwang, Gan-Jin;Oh, Yong-Hwan;Ryu, Cheol-Hwi;Choi, Ho-Sang
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.182-186
    • /
    • 2014
  • Two commercial carbon plates were evaluated as a current collector (bipolar plate) in the all vanadium redox-flow battery (V-RFB). The performance properties of V-RFB were test in the current density of $60mA/cm^2$. The electromotive forces (OCV at SOC 100%) of V-RFB using A and B current collector were 1.47 V and 1.54 V. The cell resistance of V-RFB using A current collector was $4.44{\sim}5.00{\Omega}{\cdot}cm^2$ and $3.28{\sim}3.75{\Omega}{\cdot}cm^2$ for charge and discharge, respectively. The cell resistance of V-RFB using B current collector was $4.19{\sim}4.42{\Omega}{\cdot}cm^2$ and $4.71{\sim}5.49{\Omega}{\cdot}cm^2$ for charge and discharge, respectively. The performance of V-RFB using each current collector was evaluated. The performance of V-RFB using A current collector was 93.1%, 76.8% and 71.4% for average current efficiency, average voltage efficiency and average energy efficiency, respectively. The performance of V-RFB using B current collector was 96.4%, 73.6% and 71.0% for average current efficiency, average voltage efficiency and average energy efficiency, respectively.

Discharged Maximum Current Density of Vanadium Redox Flow Battery with Increased Electrolyte Flow Rate (바나듐계 산화-환원 유동 전지의 최대 방전전류와 유량의 상관성에 대한 실험적 연구)

  • Kim, Jung Myoung;Park, Hee Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.777-784
    • /
    • 2016
  • All-vanadium redox flow batteries (VRFBs) are used as energy storage systems for multiple intermittent power sources. The performance of the VRFBs depends on the materials and operating conditions. Hence, performance characterization is of great importance in the development of the VRFBs. This paper proposes a method for determining the maximum current density based on stoichiometric ratios. A laboratory-scaled VRFB with a projected electrode area of $25cm^2$ is electrically charged when the state of the charge has begun from 0.6. The operating conditions, such as current density and volumetric flow rate are important in the test, and the maximum current density is influenced by the mass transfer coefficient. The results show that increasing the electrolyte flow rate from 5 mL/min to 60 mL/min enhances the maximum current density up to $520mA/cm^2$.

Mediated Electrochemical Oxidation of High Molecular Weight PEGs by Co(III)/Co(II) and Fe(III)/Fe(II) Redox Systems (Co(III)/Co(II) 및 Fe(III)/Fe(II) 산화환원계에 의한 고분자량 폴리에텔렌글리콜류의 매개전해산화)

  • Park, Seung-Cho;Kim, Ik-Seong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.206-211
    • /
    • 2005
  • Mediated electrochemical oxidation (MEO) of polyethylene glycols (PEGs) of molecular weight of 1000, 4000 and 20000, was carried out on both platinum (Pt) and titanium-iridium electrodes in 8.0 M nitric acid solution containing 0.5 M Fe(II) and Co(II) ion. The electrochemical parameters such as current densities, kinds of electrode, electrolyte concentration and removal efficiency were investigated in both Fe(III)/Fe(II) and Co(III)/Co(II) redox systems. The PEGs was decomposed into carbon dioxide by MEO in Fe(III)/Fe(II) and Co(III)/Co(II) redox system during 180 min and 210 min at the current density of $0.67A/cm^2$ on the Pt electrode. Removal efficiency of PEGs by MEO was better in Co(III)/Co(II) redox system than Fe(III)/Fe(II) redox system, indicating mediated electrochemical removal efficiency was 100%.

Change of the Efficiency in All-Vanadium Redox Flow Battery with Current Density (전류밀도에 따른 바나듐 레독스 흐름 전지의 효율 변화)

  • CHOI, HO-SANG;IN, DAE-MIN;SONG, YOUNG-JOON;RYU, CHEOL-HWI;HWANG, GAB-JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.531-535
    • /
    • 2017
  • The performance of all-vanadium redox flow battery (VRFB) was tested with an increase of the current density. APS membrane (anion exchange membrane) and GF050CH (cabon felt) were used as a separator and electrode, respectively. An average energy efficiency of the VRFB was 79.5%, 68.1%, and 62.8% for the current density of $60mA/cm^2$, $120mA/cm^2$, and $160mA/cm^2$, respectively. It was confirmed that VRFB can be used as a energy storage system at the higher current density even if the energy efficiency was deceased about 21%.

Cobalt Redox Electrolytes in Dye-Sensitized Solar Cells : Overview and Perspectives (염료감응 태양전지용 코발트 전해질의 최신 연구동향 및 전망)

  • Kwon, Young Jin;Kim, Hwan Kyu
    • Current Photovoltaic Research
    • /
    • v.2 no.1
    • /
    • pp.18-27
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs), developed two decades ago, are considered to be an attractive technology among various photovoltaic devices because of their low cost, accessible dye chemistry, ease of fabrication, high power conversion efficiency, and environmentally friendly nature. A typical DSSCs consists of a dye-coated $TiO_2$ photoanode, a redox electrolyte, and a platinum (Pt)-coated fluorine-doped tin oxide (FTO) counter electrode. Among them, redox electrolytes have proven to be extremely important in improving the performance of DSSCs. Due to many drawbacks of iodide electrolytes, many research groups have paid more attention to seeking other alternative electrolyte systems. With regard to this, one-electron outer sphere redox shuttles based on cobalt complexes have shown promising results: In 2014, porphyrin dye (SM315) with the cobalt (II/III) redox couple exhibited a power conversion efficiency of 13% in DSSCs. In this review, we will provide an overview and perspectives of cobalt redox electrolytes in DSSCs.