• Title/Summary/Keyword: redistribution models

Search Result 57, Processing Time 0.022 seconds

A redistribution model of the history-dependent Parrondo game (과거의존 파론도 게임의 재분배 모형)

  • Jin, Geonjoo;Lee, Jiyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.77-87
    • /
    • 2015
  • Parrondo paradox is the counter-intuitive phenomenon where two losing games can be combined to win or two winning games can be combined to lose. In this paper, we consider an ensemble of players, one of whom is chosen randomly to play game A' or game B. In game A', the randomly chosen player transfers one unit of his capital to another randomly selected player. In game B, the player plays the history-dependent Parrondo game in which the winning probability of the present trial depends on the results of the last two trials in the past. We show that Parrondo paradox exists in this redistribution model of the history-dependent Parrondo game.

Practical design guidlines for semi-continuous composite braced frames

  • Liew, J.Y. Richard;Looi, K.L.;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.213-230
    • /
    • 2001
  • This paper presents a simplified approach for the design of semi-continuous composite beams in braced frames, where specific attention is given to the effect of joint rotational stiffness. A simple composite beam model is proposed incorporating the effects of semi-rigid end connections and the nonprismatic properties of a 'cracked' steel-concrete beam. This beam model is extended to a sub-frame in which the restraining effects from the adjoining members are considered. Parametric studies are performed on several sub-frame models and the results are used to show that it is possible to correlate the amount of moment redistribution of semi-continuous beam within the sub-frame using an equivalent stiffness of the connection. Deflection equations are derived for semi-continuous composite beams subjected to various loading and parametric studies on beam vibrations are conducted. The proposed method may be applied using a simple computer or spreadsheet program.

Comparison of Two-Equation Model and Reynolds Stress Models with Experimental Data for the Three-Dimensional Turbulent Boundary Layer in a 30 Degree Bend

  • Lee, In-Sub;Ryou, Hong-Sun;Lee, Seong-Hyuk;Chae, Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.93-102
    • /
    • 2000
  • The objective of the present study is to investigate the pressure-strain correlation terms of the Reynolds stress models for the three dimensional turbulent boundary layer in a $30^{\circ}$ bend tunnel. The numerical results obtained by models of Launder, Reece and Rodi (LRR) , Fu and Speziale, Sarkar and Gatski (SSG) for the pressure-strain correlation terms are compared against experimental data and the calculated results from the standard k-${\varepsilon}$ model. The governing equations are discretized by the finite volume method and SIMPLE algorithm is used to calculate the pressure field. The results show that the models of LRR and SSG predict the anisotropy of turbulent structure better than the standard k-${\varepsilon}$ model. Also, the results obtained from the LRR and SSG models are in better agreement with the experimental data than those of the Fu and standard k-${\varepsilon}$ models with regard to turbulent normal stresses. Nevertheless, LRR and SSG models do not effectively predict pressure-strain redistribution terms in the inner layer because the pressure-strain terms are based on the locally homogeneous approximation. Therefore, to give better predictions of the pressure-strain terms, non-local effects should be considered.

  • PDF

Application of the compressive-force path concept in the design of reinforced concrete indeterminate structures: A pilot study

  • Seraj, Salek M.;Kotsovos, Michael D.;Pavlovic, Milija N.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.5
    • /
    • pp.475-495
    • /
    • 1995
  • In the past, physical models have been proposed, in compliance with the concept of the compressive-force path, for the realistic design of various statically determinate structural concrete members. The present work extends these models so as to encompass indeterminate RC structural forms. Pilot tests conducted on continuous beams and fixed-ended portal frames have revealed that designing such members to present-day concepts may lead to brittle types of failure. On the other hand, similar members designed on the basis of the proposed physical models attained very ductile failures. It appears that, unlike current design approaches, the compressive-force path concept is capable of identifying those areas where failure is most likely to be triggered, and ensures better load redistribution, thus improving ductility. The beneficial effect of proper detailing at the point of contraflexure in an indeterminate RC member is to be noted.

A Study on the Analysis of PSC Box Girder Bridge Considering Construction Stage in Box Section (시공단계를 고려한 콘크리트-콘크리트 합성형 PSC 박스거더 교량의 해석)

  • 김영진;김병석;강재윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.694-700
    • /
    • 1998
  • PSC box bridge by MSS construction method may not be set at cross section at one step. Web and bottom flange(U member) would be set at first, top flange will be set later with a time lag. In this case, U member and top flange concrete have different strain history. As two different aged section behaves as the composite section, there would happen the redistribution of stress. This is come from time-dependent strain characteristics of concrete itself. In this study, two models are considered, one with considering the set time of cross section and the other without. By performing longitudinal analysis of two models on considering construction stage, the stress differences of two are compared. As the analysis results show a considerable differences in the stresses of cross section between two models, the set time of cross section is needed for rational design f PSC box girder bridge.

  • PDF

Tunnel lining load with consideration of the rheological properties of rock mass and concrete

  • Lukic, Dragan C.;Zlatanovic, Elefterija M.;Jokanovic, Igor M.
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.53-62
    • /
    • 2020
  • Rheological processes in the rock mass for the stress-strain analysis are quite important when considering the construction of underground structures in soft rock masses, particularly in case of construction in several stages. In the analysis, it can be assumed that the reinforced concrete structure is slightly deformable in relation to the rock mass, and the rheological stress redistribution happens at the expense of the elements of rock mass. The basic elements of rheological models for certain types of rock mass and analysis of these models are presented in the first part of this paper. The second part is dedicated to the analysis of rheological processes in marl rock mass and the influence of these processes on the reinforced-concrete tunnel structure.

A Study on the Behavior of Composite PSC Box Girder High-speed Railway Bridges (고속전철 PSC 박스거더 교량의 합성거동에 관한 연구)

  • 김영진;김병석;강재윤
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.54-60
    • /
    • 1998
  • PSC box bridges by MSS construction method in high-speed railway may not be cast in place at one step. Web and bottom flange(U member) in the cross section are cast in place at first, then top flange will be cast in place later with some time lag. In this section, stress distributions of U member and top flange are different with those in generally complete cast in place cross section. In the composite section composed of two different aged members, the redistribution of stresses takes place. This results from time-dependent strain characteristics of concrete and the effects of forces applied at the various stages. For comparison in the present paper, two models, one with the composite cross section and the other with generally complete cast in place cross section, are analyzed. The longitudinal stress differences of two models on considering construction stages are compared. As the analysis results show the considerable differences in the stresses of cross section between two models, the composition of cross section is considered for rational design of PSC box girder bridge.

  • PDF

A Study on Excavation Responses of Underground Openings for Radioactive Waste Disposal (굴착으로 인한 방사성폐기물 지하처분공동의 거동변화)

  • 김선훈;김대홍;최규섭;김진웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.174-179
    • /
    • 1992
  • In this paper a discussion is presented about excavation responses of underground openings for radioactive waste disposal. The effects of excavation methods, stress redistribution, thermal change, and backfill materials are reviewed. Comparisons of computational models for discontinuous reek masses and discussions on numerical simulation techniques for the excavation of underground openings are also described. Finally, the application of the CAD system to the planning, design and construction of underground openings fop radioactive waste disposal is introduced.

  • PDF

Prediction of moments in composite frames considering cracking and time effects using neural network models

  • Pendharkar, Umesh;Chaudhary, Sandeep;Nagpal, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.2
    • /
    • pp.267-285
    • /
    • 2011
  • There can be a significant amount of moment redistribution in composite frames consisting of steel columns and composite beams, due to cracking, creep and shrinkage of concrete. Considerable amount of computational effort is required for taking into account these effects for large composite frames. A methodology has been presented in this paper for taking into account these effects. In the methodology that has been demonstrated for moderately high frames, neural network models are developed for rapid prediction of the inelastic moments (typically for 20 years, considering instantaneous cracking, and time effects, i.e., creep and shrinkage, in concrete) at a joint in a frame from the elastic moments (neglecting instantaneous cracking and time effects). The proposed models predict the inelastic moment ratios (ratio of elastic moment to inelastic moment) using eleven input parameters for interior joints and seven input parameters for exterior joints. The training and testing data sets are generated using a hybrid procedure developed by the authors. The neural network models have been validated for frames of different number of spans and storeys. The models drastically reduce the computational effort and predict the inelastic moments, with reasonable accuracy for practical purposes, from the elastic moments, that can be obtained from any of the readily available software.

Moment redistribution of continuous composite I-girder with high strength steel

  • Joo, Hyun Sung;Moon, Jiho;Sung, Ik-Hyun;Lee, Hak-Eun
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.873-887
    • /
    • 2015
  • The continuous composite I-girder should have a sufficient rotation capacity (or ductility) to redistribute the negative bending moment into an adjacent positive bending moment region. However, it is generally known that the ductility of the high strength steel is smaller than that of conventional steel, and application of high strength steel can cause ductility problems in a negative moment region of the I-girder. In this study, moment redistribution of the continuous composite I-girder with high strength steel was studied, where high strength steel with yield stress of 690 MPa was considered (the ultimate stress of the steel was 800 MPa). The available and required rotation capacity of the continuous composite I-girder with high strength steel was firstly derived based on the stress-strain curve of high strength steel and plastic analysis, respectively. A large scale test and a series of non-linear finite element analysis for the continuous composite I-girder with high strength steel were then conducted to examine the effectiveness of proposed models and to investigate the effect of high strength steel on the inelastic behavior of the negative bending moment region of the continuous composite I-girder with high strength steel. Finally, it can be found that the proposed equations provided good estimation of the requited and available rotation capacity of the continuous composite I-girder with high strength steel.