• Title/Summary/Keyword: red tide algae

Search Result 94, Processing Time 0.019 seconds

Interactions between the voracious heterotrophic nanoflagellate Katablepharis japonica and common heterotrophic protists

  • Kim, So Jin;Jeong, Hae Jin;Jang, Se Hyeon;Lee, Sung Yeon;Park, Tae Gyu
    • ALGAE
    • /
    • v.32 no.4
    • /
    • pp.309-324
    • /
    • 2017
  • Recently, the heterotrophic nanoflagellate Katablepharis japonica has been reported to feed on diverse red-tide species and contribute to the decline of red tides. However, if there are effective predators feeding on K. japonica, its effect on red tide dynamics may be reduced. To investigate potential effective protist predators of K. japonica, feeding by the engulfment-feeding heterotrophic dinoflagellates (HTDs) Oxyrrhis marina, Gyrodinium dominans, Gyrodinium moestrupii, Polykrikos kofoidii, and Noctiluca scintillans, the peduncle-feeding HTDs Luciella masanensis and Pfiesteria piscicida, the pallium-feeding HTD Oblea rotunda, and the naked ciliates Strombidium sp. (approximately $20{\mu}m$ in cell length), Pelagostrobilidium sp., and Miamiensis sp. on K. japonica was explored. We found that none of these heterotrophic protists fed on actively swimming cells of K. japonica. However, O. marina, G. dominans, L. masanensis, and P. piscicida were able to feed on heat-killed K. japonica. Thus, actively swimming behavior of K. japonica may affect feeding by these heterotrophic protists on K. japonica. To the contrary, K. japonica was able to feed on O. marina, P. kofoidii, O. rotunda, Miamiensis sp., Pelagostrobilidium sp., and Strombidium sp. However, the specific growth rates of O. marina did not differ significantly among nine different K. japonica concentrations. Thus, K. japonica may not affect growth of O. marina. Our findings suggest that the effect of predation by heterotrophic protists on K. japonica might be negligible, and thus, the effect of grazing by K. japonica on populations of red-tide species may not be reduced by mortality due to predation by protists.

Morphology and Ecology of Peridinium bipes var. occultatum Lindem.(Dinophyceae) Forming Freshwater Red Tides in Korean Dam Reservoirs

  • Lee, Jung-Joon;Jang, Sung-Hyun;Lee, Joo-Heon;Lee, Jung-Ho
    • ALGAE
    • /
    • v.21 no.4
    • /
    • pp.433-443
    • /
    • 2006
  • This study was performed to understand the morphological and ecological characteristics of Peridinium bipes var. occultatum Lindem., which is the organism responsible for freshwater red tides in Sangsa dam and Miryang dam reservoirs. The samples were collected from April to July 2004 when the freshwater red tides occurred. In the study, we were able to differentiate P. bipes var. occultatum from P. bipes, a closely related species, by its smaller antapical horn size. In Miryang dam reservoir the red tide occurred only within the area of the upstream, but it was well developed in all of the water area in Sangsa dam reservoir. In 2004 average LTSI (Lake Trophic Status Index; Yang and Dickman, 1993) of Miryang dam reservoir was 3.53 of mesotrophic state and Sangsa dam reservoir was 8.59 of eutrophic state. It was determined, through culture experiments under various conditions that vitamins, trace elements, phosphorus and nitrogen were important contributing factors to the growth of P. bipes var. occultatum. A rapid toxic effect of P. bipes var. occultatum on aquatic organisms such of Daphnia magna and Oryzias latipes was not identified in this study.

Monitoring of Algal Bloom at Seomjin River Estuary, Southern Coast of Korea

  • Yoo, Jong-Su
    • ALGAE
    • /
    • v.18 no.4
    • /
    • pp.361-363
    • /
    • 2003
  • This study was conducted at Seomjin River estuary to identify the causative species of algal bloom and their blooming cycles. Field surveys were conducted at 4 stations in every week from April to December of 1999. Thirty species were observed as the causative species of alga bloom. Skeletonema costatum, Thalassiosira sp., and microflagellate spp. (mixed red tide: Chroomonas sp. and two species of Prasinophycea) made algal blooms during the present study period. In addition, toxic algal species of diatom Pseudo-nitzschia multiseries and dinoflagellate Dinophysis acuminata were observed. The algal blooms were caused by microflagellate spp. in June, Thalassiosira sp. in July and Skeletonema costatum in August. Generally, the algal blooms persisted for about 5 days in this area.

Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: III. Metazooplankton and their grazing impacts on red-tide organisms and heterotrophic protists

  • Lee, Moo Joon;Jeong, Hae Jin;Kim, Jae Seong;Jang, Keon Kang;Kang, Nam Seon;Jang, Se Hyeon;Lee, Hak Bin;Lee, Sang Beom;Kim, Hyung Seop;Choi, Choong Hyeon
    • ALGAE
    • /
    • v.32 no.4
    • /
    • pp.285-308
    • /
    • 2017
  • Cochlodinium polykrikoides red tides have caused great economic losses in the aquaculture industry in many countries. To investigate the roles of metazooplankton in red tide dynamics of C. polykrikoides in the South Sea of Korea, the abundance of metazooplankton was measured at 60 stations over 1- or 2-week intervals from May to November 2014. In addition, the grazing impacts of dominant metazooplankton on red tide species and their potential heterotrophic protistan grazers were estimated by combining field data on the abundance of red tide species, heterotrophic protist grazers, and dominant metazooplankton with data obtained from the literature concerning ingestion rates of the grazers on red tide species and heterotrophic protists. The mean abundance of total metazooplankton at each sampling time during the study was 297-1,119 individuals $m^{-3}$. The abundance of total metazooplankton was significantly positively correlated with that of phototrophic dinoflagellates (p < 0.01), but it was not significantly correlated with water temperature, salinity, and the abundance of diatoms, euglenophytes, cryptophytes, heterotrophic dinoflagellates, tintinnid ciliates, and naked ciliates (p > 0.1). Thus, dinoflagellate red tides may support high abundance of total metazooplankton. Copepods dominated metazooplankton assemblages at all sampling times except from Jul 11 to Aug 6 when cladocerans and hydrozoans dominated. The calculated maximum grazing coefficients attributable to calanoid copepods on C. polykrikoides and Prorocentrum spp. were 0.018 and $0.029d^{-1}$, respectively. Therefore, calanoid copepods may not control populations of C. polykrikoides or Prorocentrum spp. Furthermore, the maximum grazing coefficients attributable to calanoid copepods on the heterotrophic dinoflagellates Polykrikos spp. and Gyrodinium spp., which were grazers on C. polykrikoides and Prorocentrum spp., respectively, were 0.008 and $0.047d^{-1}$, respectively. Therefore, calanoid copepods may not reduce grazing impact by these heterotrophic dinoflagellate grazers on populations of the red tide dinoflagellates.

Use of Molecular Detection Technique for Red Tide Warning of Cochlodinium polykrikoides (Cochlodinium polykrikoides 적조출현주의보 발령에 분자탐침기법의 활용)

  • PARK, TAE GYU;WON, KYOUNG MI;KIM, WON JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.1
    • /
    • pp.44-47
    • /
    • 2016
  • Real-time PCR was applied to early warning of red tide. For early warning of red tide at $10cells\;mL^{-1}$, Cochlodinium polykrikoides specific real-time PCR was used as a complement of microscopy that has a lower detection sensitivity. C. polykrikoides appeared extensively in Tongyeong, Namhae waters at low densities in the end of June, and early warning of C. polyrkrikoides blooms was issued on 2 August 2015.

Detection technique of Red Tide Using GOCI Level 2 Data (GOCI Level 2 Data를 이용한 적조탐지 기법 연구)

  • Bak, Su-Ho;Kim, Heung-Min;Hwang, Do-Hyun;Yoon, Hong-Joo;Seo, Won-Chan
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.673-679
    • /
    • 2016
  • This study propose a new method to detect Cochlodinium polykrikoides red tide occurring in South Sea of Korea using Water-leaving Radiance data and Absorption Coefficients data of Geostationary Ocean Color Imager (GOCI). C. polykrikoides were analyzed and the irradiance and light emission characteristics of the wavelength range from 412 nm to 555 nm were confirmed. The detection technique proposed in this study detects the red tide occurring in the optically complex South Sea. Based on these results, it can be used for future red tide prevention.

A new species of Bangiopsis: B. franklynottii sp. nov. (Stylonematophyceae, Rhodophyta) from Australia and India and comments on the genus

  • West, John A.;de Goer, Susan Loiseaux;Zuccarello, Giuseppe C.
    • ALGAE
    • /
    • v.29 no.2
    • /
    • pp.101-109
    • /
    • 2014
  • Small red algae, especially those previously referred to as 'primitive' are often overlooked, but can be quite abundant. These 'primitive' red algae are now placed in several classes distinct from the Florideophyceae, for example the Stylonematophyceae. A brownish-red filamentous alga was collected from a sandy tide pool at Cape Tribulation, Queensland, Australia. Cultured specimens were identified as Bangiopsis and conformed to the morphological characters of the genus (multicellular base, erect filaments branched or unbranched, uniseriate to multiseriate-tubular, single multilobed purple-red to red-brown plastid with central pyrenoid, vegetative cells released directly as spores). Molecular data of two plastid genes (rbcL, psbA) support placement of the Australian isolate and isolates from India in Bangiopsis. The genetic variation between these isolates and isolates from Puerto Rico previously attributed to B. subsimplex indicates that these should be considered as a separate species. As the type locality is in the Atlantic Ocean, French Guiana, and not far from Puerto Rico, and the Puerto Rican isolate has been used often in phylogenetic analyses, we propose that the Indian and Pacific Ocean isolates be designated a new species, B. franklynottii, to acknowledge Ott's many years of research on inconspicuous freshwater and marine red algae. Our research also highlights the lack of careful descriptions in many of the records of this genus and the lack of morphological characters to distinguish species. Especially within the morphologically simple red algae, morphological distinctness does not necessarily reflect evolutionary divergences.

Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: I. Temporal variations in three-dimensional distributions of red-tide organisms and environmental factors

  • Jeong, Hae Jin;Lim, An Suk;Lee, Kitack;Lee, Moo Joon;Seong, Kyeong Ah;Kang, Nam Seon;Jang, Se Hyeon;Lee, Kyung Ha;Lee, Sung Yeon;Kim, Mi Ok;Kim, Ji Hye;Kwon, Ji Eun;Kang, Hee Chang;Kim, Jae Seong;Yih, Wonho;Shin, Kyoungsoon;Jang, Poong Kook;Ryu, Joo-Hyung;Kim, Sung Young;Park, Jae Yeon;Kim, Kwang Young
    • ALGAE
    • /
    • v.32 no.2
    • /
    • pp.101-130
    • /
    • 2017
  • The ichthyotoxic Cochlodinium polykrikoides red tides have caused great economic losses in the aquaculture industry in the waters of Korea and other countries. Predicting outbreak of C. polykrikoides red tides 1-2 weeks in advance is a critical step in minimizing losses. In the South Sea of Korea, large C. polykrikoides red tide patches have often been recorded offshore and transported to nearshore waters. To explore the processes of offshore C. polykrikoides red tides, temporal variations in 3-dimensional (3-D) distributions of red tide organisms and environmental parameters were investigated by analyzing 4,432 water samples collected from 2-5 depths of 60 stations in the South Sea, Korea 16 times from May to Nov, 2014. In the study area, the vegetative cells of C. polykrikoides were found as early as May 7, but C. polykrikoides red tide patches were observed from Aug 21 until Oct 9. Cochlodinium red tides occurred in both inner and outer stations. Prior to the occurrence of large C. polykrikoides red tides, the phototrophic dinoflagellates Prorocentrum donghaiense (Jun 12 to Jul 11), Ceratium furca (Jul 11 to Aug 21), and Alexandrium fraterculus (Aug 21) formed red tides in sequence, and diatom red tides formed 2-3 times without a certain distinct pattern. The temperature for the optimal growth of these four red tide dinoflagellates is known to be similar. Thus, the sequence of the maximum growth rates of P. donghaiense > C. furca > A. fraterculus > C. polykrikoides may be partially responsible for this sequence of red tides in the inner stations following high nutrients input in the surface waters because of heavy rains. Furthermore, Cochlodinium red tides formed and persisted at the outer stations when $NO_3$ concentrations of the surface waters were < $2{\mu}M$ and thermocline depths were >20 m with the retreat of deep cold waters, and the abundance of the competing red-tide species was relatively low. The sequence of the maximum swimming speeds and thus potential reachable depths of C. polykrikoides > A. fraterculus > C. furca > P. donghaiense may be responsible for the large C. polykrikoides red tides after the small blooms of the other dinoflagellates. Thus, C. polykrikoides is likely to outgrow over the competitors at the outer stations by descending to depths >20 m and taking nutrients up from deep cold waters. Thus, to predict the process of Cochlodinium red tides in the study area, temporal variations in 3-D distributions of red tide organisms and environmental parameters showing major nutrient sources, formation and depth of thermoclines, intrusion and retreat of deep cold waters, and the abundance of competing red tide species should be well understood.

Histological Effect of Sodium Hypochlorite (NaOCl), Exposed at Red Tide-killing Concentrations, in Rockfish and Little Neck Clam (적조생물구제농도의 Sodium Hypochlorite(NaOCl)의 노출에 따른 조피볼락 및 바지락의 조직학적 영향)

  • 한조희;김영석;허민도;정해진;박관하
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.2
    • /
    • pp.67-74
    • /
    • 2001
  • In a previous study by Kim et al. (2000), sodium hypochlorite (NaOCl) has been demonstrated to be effective against algae that cause red tides. To secure the environmental safely of the chemical in practical use, effect of NaOCl, at concentrations required for algicidal activity, on the histology of rockfish and little neck clam was examined. When the animals were exposed to NaOCl at concentrations of 0.5 or 2ppm for 1 hr, there was no exposure-associated histological change in either animal. As the experimental exposure condition was set in consideration of the use, our results provide safety information necessary for practical application to marine fields.

  • PDF

Nutrient Uptake and Growth Kinetics of Chattonella antiqua (Hada) Ono (Raphidophyceae) Isolated from Korea

  • Seo, Kyung-Suk;Lee, Chang-Kyu
    • ALGAE
    • /
    • v.22 no.3
    • /
    • pp.235-240
    • /
    • 2007
  • The red tide-causing flagellate Chattonella anticfua can cause mass fish kills by their clogging in fish gills. Thisstudy examined the nutrient requirements of C. antiqua isolated from Korea. C. anticfua displayed maximum growthat the day five, followed by a decrease in cell density. Nitrate and nitrite were the preferred nitrogen sources, alonewith adenosine diphosphate for phosphorus compounds. In medium that contained ammonium, a significantdecrease in cell density was observed. Half-saturation constants, Ks, calculated from the maximum growth ratewere 4.94 U|M for NC>3 and 0.79 flM for P04. The growth of C. antiqua was not within the function of the N:P ratio (RU= 0.29). With an N:P ratio as low as 10, the increase in cell density was apparent, with a higher division rate. At lev-els above 50 fiM of NaNOg or 8 ;uM of NaHUPCU, the growth rates were somewhat decreased. Phosphate was thelimiting factor for C. antiqua growth since the starvation of phosphate had brought about a rapid decrease in celldensity in semi-continuous culture. Studies about the temporal modification of the efficiency of nitrate or phosphateuptake may be necessary to explain the bloom dynamics of C. antiaua.