• 제목/요약/키워드: red soils

검색결과 188건 처리시간 0.02초

지형분석을 통한 한국의 적색토 분포 예측 및 해석 (A Prediction and Characterization of the Spatial Distribution of Red Soils in Korea Using Terrain Analyses)

  • 박수진
    • 한국지형학회지
    • /
    • 제19권2호
    • /
    • pp.81-98
    • /
    • 2012
  • 이 연구는 한국의 적색토 분포 특성을 살펴보고, 지형분석을 통해 분포 지역을 예측한 뒤, 토양 및 지형발달의 관점에서 그 결과를 해석하는 것이 목적이다. 한국의 적색토는 배수가 양호한 평탄한 지형과 완경사지에 주로 분포하고 있으며, 고온다습한 과거의 기후환경 하에서 형성된 뒤 현재까지 잔류하고 있는 것으로 알려져 있다. 이 연구에서 적색토 분포에 대한 정보는 한국의 개략토양도에서 적황색토로 표기된 대토양군들을 추출하여 사용하였으며, 사면에서 나타나는 물과 물질의 이동특성에 기초한 수치고도모델(DEM) 분석을 통해 적색토 분포를 예측하였다. 적색토는 경사도와 지표곡면률이 낮고, 하천수와 토양수의 출현 가능성이 낮은 평탄지와 구릉지에 주로 분포한다는 가설 하에서 실행된 DEM 분석 결과, 실제 조사된 적색토 출현 지역의 67.4%를 예측할 수 있었다. 조사된 적색토와 예측된 적색토간의 차이를 비교하는 과정에서 한국의 토양 및 지형발달을 이해할 수 있는 몇 가지 중요한 사실들을 발견하였다. 먼저 내륙의 침식평탄지에서는 적색토의 분포가 지형분석에 의해 과대 추정되고 있다. 이 지역은 활발한 침식 및 삭박작용을 받고 있어 유사한 지형 조건을 갖춘 곳에 비해 상대적으로 낮은 적색토 출현 빈도를 보이는 것으로 해석된다. 반면, 석회암 지역의 경우 적색토 출현 빈도가 예측결과보다 과소 추정되고 있어, 적색토 분포에 석회암이 중요한 역할을 하는 것으로 보인다. 뢰스(loess) 퇴적층의 존재가 제기되고 있는 한반도 중앙부의 연천과 철원지역 역시 지형분석 결과보다 적색토의 출현 빈도가 높게 나타나 주목된다. 마지막으로 서산과 포항을 연결하는 선을 경계로 그 북쪽이 남쪽에 비해 예측된 것보다 높은 적색토 빈도를 보인다. 이 결과는 토양발달의 공간적인 차이, 뢰스층 및 기타 지질의 영향, 그리고 한반도가 가지고 있는 지반운동의 특성 등의 관점에서 보다 체계적인 연구의 필요성을 제시하고 있다.

레드머드 중화 방법에 따른 토양 중 비소의 안정화 특성 평가 (Effect of Neutralization of Red Mud on Arsenic Stabilization in Soils)

  • 우지오;김은정
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권6호
    • /
    • pp.65-73
    • /
    • 2021
  • Since the amount of red mud, generated from aluminum smelting process as a by-product, has increased worldwide, the recycle and metal resource recovery from the red mud is becoming more important. In this study, in order to recycle the red mud as a soil stabilizer to remediate arsenic contaminated soils, neutralization of red mud was investigated. Red mud was neutralized by washing with distilled water and NaCl, CaCl2, FeCl3, and HCl solutions and heating at 200-800℃, and arsenic stabilization characteristics in soils were evaluated with the neutralized red mud. Although washing with distilled water was not effective in neutralizing red mud, the application of the washed red mud to soils lowered the soil pH compared to the application of untreated red mud. Among NaCl, CaCl2, FeCl3, and HCl solutions, washing with FeCl3 showed the most effective in lowering pH of the red mud from pH 10.73 to pH 4.26. Application of the neutralized red mud in soils resulted in quite different arsenic stabilization efficiency depending on soil samples. In M1 soil, which showed relatively high arsenic stabilization efficiency by untreated red mud, the neutralization of red mud resulted in little effect on arsenic stabilization in soil. On the other hand, in M2 soil, which showed low arsenic stabilization efficiency by untreated red mud, the neutralization of red mud increased arsenic stabilization significantly. Soil characteristics such as clay minerals and pH buffering capacity seemed to affect reactions between red mud and soils, which resulted in different effects of the red mud application on soil pH and arsenic stabilization efficiencies.

산지토양(山地土壤)의 특성(特性)과 개량(改良) (Soil Characteristics and Improvement of Reclaimable Hillside Land)

  • 류인수
    • 한국토양비료학회지
    • /
    • 제11권4호
    • /
    • pp.247-262
    • /
    • 1979
  • Majority of reclaimable soils in hillside lands in Korea are red yellow soils, with exception in Jeju island, where most of reclaimable hillside lands are composed of volcanic ash soils. Songjeong, Yesan and Samgag series are the major soil series of red yellow soils which are available for the reclamation. When observed in the fields, they are distinguished as reddish brown clay loam, red yellow sand loam and yellowish brown sand loam. They have moderately good physical properties but their chemical properties are generally poor for crop cultivations. The chemical properties of red yellow soils, as compared to long time cultivated (matured) soils, are characterized by very low pH, high in exchangeable Al content and phosphorus fixation capacity. Also extraodinary low available phosphorus and organic matter contents are generally observed. On the other, the chemical properties of volcanic ash soils are characterized by high armophous Fe and Al hydroxides and organic matter contents, which are the causative factors for the extremely high phosphorus fixation capacity of the soils. The phosphorus fixation capacity of volcanic acid soils are as high as 5-10 times of that of red yellow soils. Poor growth of crops on newly reclaimed red yellow soils are mainly caused by very low available P and pH and high exchangeable Al. Relatively high P fixation capacity renders the failure of effective use of applied P when the amount of application is not sufficient. Applications of lime to remove the exchangeable Al and relatively large quantity of P to lower the P fixation capacity and to increase the available P are the major recommendations for the increased crop production on red yellow hillside soils. Generally recommendable amounts of lime and P to meet the aforementioned requirements, are 200-250kg/10a of lime and $30-35kg\;P_2O_5/10a$. Over doses of lime. frequently induces the K, B, arid Zn deficiencies and lowers the uptake of P. In volcanic ash soils, it is difficult to alter the exchangeable Al and the P fixation capacity by liming and P application. This may be due to the peculiarity of volcanic ash soil in chemical properties. Because of this feature, the amelioration of volcanic ash soils is not as easy as in the case of red yellow soils. Application of P as high as $100kg\;P_2O_5/10a$ is needed to bring forth the significant yield response in barley. Combined applications of appropriate levels of P, lime, and organic matter, accompanied by deep plowing, results in around doubling of the yields of various crops on newly reclaimed red yellow soils.

  • PDF

Mechanism of P Solubilization in Vermicompost Treated Red Lateritic Soils

  • Pramanik, Prabhat;Chakraborty, Hritesh;Kim, Pil-Joo
    • 한국환경농학회:학술대회논문집
    • /
    • 한국환경농학회 2011년도 30주년 정기총회 및 국제심포지엄
    • /
    • pp.188-195
    • /
    • 2011
  • Red lateritic soils are typically low in total organic carbon (TOC) and available phosphorus (AP) content and continuous fertilization is required to obtain desired crop yield. In this experiment, cattle manure in three forms (air-dried, composted and vermicomposted) were applied to red lateritic soil to study their effect on TOC and AP content of soil and probable mechanism of P-solubilization as affected by these treatments were also studied. Vermicompost was the most effective to solubilize insoluble P in red lateritic soil (Alfisols) as compared to other organic amendments (air-dried cattle manure and compost). The highest SPA in vermicompost-treated soil attributed to the comparatively higher concentration of all the three SPA isozymes in these soils. The maximum P-solubilization in these soils might be attributed to the highest SPA and presence of several organic acids like citric, lactic and oxalic acids in vermicompost-treated soils. Since, vermicompost application also increased TOC, mineralizable N and exchangeable K content of soil, vermicompost could be considered as the most rational organic amendment to improve chemical properties of red lateritic soils.

  • PDF

Effect of Mixed Liquid Fertilization on Growth Responses of Red peppers and Soil Chemical Properties

  • Park, Ji-Suk;Lee, Min-Jin;Lee, Seo-Youn;Kim, Jong-Sung;Lee, Tae-Kyu;Ro, Hee-Myong
    • 한국토양비료학회지
    • /
    • 제48권3호
    • /
    • pp.225-232
    • /
    • 2015
  • We evaluated the effect of mixed liquid fertilizer (MLF) on growth responses of plants and soil chemical properties. A pot experiment with red pepper (Capsicum annuum L.) using loam soil was conducted for 81 days in a temperature-controlled glasshouse, and four N fertilization treatments were laid out in a completely randomized design with three replicates: control (C), chemical fertilizer treatment (CF), and two rates (MLF-0.5 and MLF-1.0) of MLF treatment. Soils were periodically sampled and analyzed for pH, EC(Electrical Conductivity), total N, inorganic N and total C, and some growth characteristics of red peppers were measured. During the experimental periods, the pH of MLF soils was higher than that of CF soils. Soil EC increased right after application of CF or MLF, and the intial increase persisted in CF and MLF soils at the end of experiment. Soil total-N increased right after application of CF or MLF, and this initial increase persisted only in MLF-1.0 soils. Soil inorganic N content initially increased in CF or MLF-1.0 soils, but the initial increase disappeared in 56 days after transplanting. Soil total-C was maintained higher in MLF-1.0 soils and lower in CF soils than in control soils, and the intial increase in MLF-1.0 soils finally disappeared to the level of control soils. Plant height, dry weight of plant organs (shoots, roots and fruit), and the number, diameter and length of red pepper fruits were greatest in CF plants. On the other hand, the effect of MLF-application was different depending on the rate of application. However, no consistent effect of N treatments on some major elements of the organs of red peppers was observed. The amounts of N taken up by plants were 1.3 g for CF, 0.8 g for MLF-1.0, 0.5 g for MLF-0.5 and 0.4 g for control treatments. The results of this study showed that mixed liquid fertilizer (MLF) could appropriately serve as an alternative to chemical N fertilizer in red pepper cultivation.

Soil stabilization by ground bottom ash and red mud

  • Kim, Youngsang;Dang, My Quoc;Do, Tan Manh;Lee, Joon Kyu
    • Geomechanics and Engineering
    • /
    • 제16권1호
    • /
    • pp.105-112
    • /
    • 2018
  • This paper presents results of a compressive investigation conducted on weathered soil stabilized with ground bottom ash (GBA) and red mud (RM). The effects of water/binder ratio, RM/GBA ratio, chemical activator (NaOH and $Na_2SiO_3$) and curing time on unconfined compressive strength of stabilized soils were examined. The results show that the water/binder ratio of 1.2 is optimum ratio at which the stabilized soils have the maximum compressive strength. For 28 days of curing, the compressive strength of soils stabilized with alkali-activated GBA and RM varies between 1.5 MPa and 4.1 MPa. The addition of GBA, RM and chemical activators enhanced strength development and the rate of strength improvement was more significant at the later age than at the early age. The potential environmental impacts of stabilized soils were also assessed. The chemical property changes of leachate from stabilized soils were analyzed in terms of pH and concentrations of hazardous elements. The observation revealed that the soil mixture with ground bottom ash and red mud proved environmentally safe.

Mechanism of strength damage of red clay roadbed by acid rain

  • Guiyuan Xiao;Jian Wang;Le Yin;Guangli Xu;Wei Liu
    • Geomechanics and Engineering
    • /
    • 제34권5호
    • /
    • pp.473-480
    • /
    • 2023
  • Acid rain of soils has a significant impact on mechanical properties. An X-ray diffraction test, scanning electron microscope (SEM) test, laser particle size analysis test, and triaxial unconsolidated undrained (UU) test were carried out in red clay soils with different compaction degrees under the effect of different concentrations of acid. The experiments demonstrated that: the dissolution effect of acid rain on colluvium weakened with the increase in the compacting degree under the condition of certain pH values, i.e., the damage to the structure of red clay soil was relatively light, where the number of newly increased pores in the soil decreased and the agglomeration of soil particles increased; for the same compacting degree, the structural gap decreased, and the agglomeration increased with the increase in the pH value (acidity decreases) of the acid rain; the dissolution rate of Si, Al, Fe, and other elemental minerals and cement in red clay soil was found to be higher under the effect of acid rain, in turn destroying the original structure of the soil body and producing a large number of pores. This is macroscopically expressed as the decrease of the soil cohesion and internal friction angle, thereby reducing the shear strength of the soil body.

산성암(酸性岩) 및 중성암(中性岩)의 잔적층(殘積層)에 발달(發達)한 적황색토(赤黃色土)의 생성(生成) 및 분류(分類) -제(第)II보(報) 송정통(松汀統)에 관(關)하여 (Genesis and Classification of the Red-Yellow Soils derived from Residuum on Acidic and Intermediate Rocks -II. Songjeong series)

  • 엄기태
    • 한국토양비료학회지
    • /
    • 제6권2호
    • /
    • pp.75-81
    • /
    • 1973
  • 산성암(酸性岩)인 화강암(花崗岩)의 풍화잔적물(風化殘積物)을 모재(母材)로하여 발달(發達)한 적황색상(赤黃色上)인 전남통(全南統)에 이어 송정통(松汀統)의 형태(形態), 물리(物理), 화학적특성(化學的特性)과 생성(生成) 및 분류(分類)에 관(關)하여 연구조사(硏究調査)한 결과(結果)를 요약(要約)하면 다음과 같다. 1. 형태적특성(形態的特性)을 보면 표토(表土)는 갈색(褐色) 내지(乃至) 암갈색(暗褐色)의 양토(壤土)이며 심토(心土)는 황적색(黃赤色) 내지(乃至) 적색(赤色)의 식양토(埴壤土)로 토양구조(土壤構造)의 발달(發達)은 보통(普通)이고 엷은 점토막(粘土膜)이 구조표면(構造表面)에 형성(形成)되여 있다. 기층(基層)은 매우깊고 황적색(黃赤色) 내지(乃至) 황갈색(黃褐色)의 세사양토(細砂壤土) 또는 사양토(砂壤土)로 화강암풍화(花崗岩風化) 잔적물(殘積物)이며 암석구조(岩石構造)와 유사(類似)하다. 2. 물리적특성(物理約特性)에서 토양입자(土壤粒子)의 분포(分布) 비율(比率)을 보면 표상(表土)에서 보다 심토(心土)로 점토(粘土) 함량(含量)이 많으며 기층(基層)으로 내려갈수록 점토(粘土) 함량(含量)이 줄어든다. 3. 화학적특성(化學的特性)은 유기물(有機物) 함량(含量)이 적고 토양반응(土壤反應)이 매우 강(强)한 산성(酸性)이며 염기치환용량(鹽基置換容量) 및 염기포화도(鹽基飽和度)가 낮다. 4. 토양(土壤)의 자연비옥도(自然肥沃度)는 낮어 특별(特別)한 관리(管理)나 충분(充分)한 비료(肥料)의 시용(施用) 그리고 토양침식(土壤浸蝕)을 방지(防止)하여야 경지(耕地)로 이용(利用)이 가능(可能)하다. 5. 송정통(松汀統)의 생성(生成)은 온난습윤(溫暖濕潤)한 기후조건하(氣候條件下)에서 침엽(針葉), 활엽 및 혼성림지대(混成林地帶)에 생성(生成)되며 토양분류(土壤分類)는 적황색토(赤黃色土)라 분류(分類)할 수 있고 미국(美國)의 7차시안(次試案)에 의(依)하면 Fine Loamy, mesic, Typic Hapludults, FAO/UNECO의 방법(方法)에 의(依)하면 Orthic Acrisols에 층(層)할 수 있다.

  • PDF

Effects of Microbial Iron Reduction and Oxidation on the Immobilization and Mobilization of Copper in Synthesized Fe(III) Minerals and Fe-Rich Soils

  • Hu, Chaohua;Zhang, Youchi;Zhang, Lei;Luo, Wensui
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권4호
    • /
    • pp.534-544
    • /
    • 2014
  • The effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper were investigated in a high concentration of sulfate with synthesized Fe(III) minerals and red earth soils rich in amorphous Fe (hydr)oxides. Batch microcosm experiments showed that red earth soil inoculated with subsurface sediments had a faster Fe(III) bioreduction rate than pure amorphous Fe(III) minerals and resulted in quicker immobilization of Cu in the aqueous fraction. Coinciding with the decrease of aqueous Cu, $SO_4{^{2-}}$ in the inoculated red earth soil decreased acutely after incubation. The shift in the microbial community composite in the inoculated soil was analyzed through denaturing gradient gel electrophoresis. Results revealed the potential cooperative effect of microbial Fe(III) reduction and sulfate reduction on copper immobilization. After exposure to air for 144 h, more than 50% of the immobilized Cu was remobilized from the anaerobic matrices; aqueous sulfate increased significantly. Sequential extraction analysis demonstrated that the organic matter/sulfide-bound Cu increased by 52% after anaerobic incubation relative to the abiotic treatment but decreased by 32% after oxidation, indicating the generation and oxidation of Cu-sulfide coprecipitates in the inoculated red earth soil. These findings suggest that the immobilization of copper could be enhanced by mediating microbial Fe(III) reduction with sulfate reduction under anaerobic conditions. The findings have an important implication for bioremediation in Cu-contaminated and Fe-rich soils, especially in acid-mine-drainage-affected sites.

산성암(酸性岩) 및 중성암(中性岩)의 잔적층에 발달(發達)된 적황색토(赤黃色土)의 생성(生成) 및 분류(分類) -제(第) 1 보(報) (전남통(全南統)에 관(關)하여) (Genesis and Classification of the Red-Yellow Podzolic soils derived from Residuum on Acidic and Intermediate Rocks -Vol. 1 (Jeonnam series))

  • 엄기태
    • 한국토양비료학회지
    • /
    • 제4권2호
    • /
    • pp.187-192
    • /
    • 1971
  • 산성암(酸性岩)인 화강암(花崗岩)의 풍화잔적층(風化殘積層)을 모재(母材)로한 전남통(全南統)에 대(對)한 형태(形態), 물리적(物理的), 화학적(化學的) 및 생성(生成)과 분류(分類)에 관(關)하여 조사(調査)한 결과(結果)를 요약(要約)하면 다음과 같다. 1. 형태적특성(形態的特性)에 있어서 표토(表土)는 갈색(褐色) 내지(乃至) 암갈색(暗褐色)의 미사질양토(微砂質壤土) 내지(乃至) 토양(土壤)이나 침식(侵蝕)을 받은 곳에서는 진갈색(眞褐色) 내지(乃至) 황적색(黃赤色)의 미사질식양토(微砂質埴壤土) 또는 식양토(埴壤土)이다. 심토(心土)는 황적색(黃赤色) 내지(乃至) 적색(赤色)의 미사질식양토(微砂質埴壤土) 내지(乃至) 미사질식토(微砂質埴土)로서 구조표면(構造表面)에 엷은 점토막(粘土膜)이 형성(形成)되여 있다. 기층(基層)은 심(甚)하게 풍화(風化)된 화강암(花崗岩)의 잔적모재(殘積母材)이며 토양(土壤)의 깊이는 매우 깊다. 2. 물리적(物理的) 특성(特性)에서 토양입자(土壤粒子)의 분포비율(分布比率)은 표토(表土)에서 심토(心土)로 내려 갈수록 점토(粘土)의 함량(含量)이 증가(增加)되어 심토(心土)의 중앙부분(中央部分)이 34-45% 이며 특(特)히 미사(微砂)의 함량(含量)은 50~60%로서 표토(表土) 및 심토(心土)의 차이(差異)는 별(別)로 없다. 3. 화학적(化學的) 성질(性質)은 유기물(有機物) 함량(含量)이 낮고 토양반응(土壤反應)이 강산성(强酸性)이며 염기포화도(鹽基飽和度)가 낮다. 4. 전남통(全南統)은 온난(溫暖) 습윤(濕潤)한 기후조건하(氣候條件下)에서 생성(生成)되며 분류(分類)에 있어 미농무성(美農務省) 7차시안(次試案)에 의(依)하면 Typic Hapludults, UNESCO/FAO의 분류(分類)에 의(依)하면 Helvic Acrisols에 속(屬)한다.

  • PDF