• Title/Summary/Keyword: red radish

Search Result 145, Processing Time 0.021 seconds

Basic Studies on the Consumptive Use of Water Required for Dry Field Crops (3) -Red Pepper and Radish- (밭작물 소비수량에 관한 기초적 연구(III)-고추 및 가을 무우-)

  • 김철기;김진한;정하우;최홍규;권영현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.1
    • /
    • pp.55-71
    • /
    • 1990
  • The purpose of this study is to find out the basic data for irrigation plans of red pepper and radish during the growing period, such as total amount of evapotranspiration, coefficent of evapotranspiration at each growth stage, the peak stage of evapotranspiration, the maximum ten day evapotranspiration , optimum irrigation point, total readily available moisture and intervals of irrigation date. The plots of experiment were arranged with split plot design which were composed of two factors, irrigation point for main plot and soil texture for split plot, and three levels ; irrigation point with pH1.7-2.0, pF2.1-2.4 and pF2.5-2.8, at soil texture of sandy soil, sandy loam and silty clay for both red pepper and radish, with two replications. The results obtained are summarized as follows. 1.1/10 exceedance probability values of maximum total pan evaporation during growing period for red peppr and radish were shown as 663.6 mm and 251.8 mm. respectively, and those of maximum ten day pan evaporation for red pepper and radish, 67.1 mm and 46.9 mm, respectively. 2.The time that annual maximum of ten day pan evaporation can he occurred, exists at any stage between the middle of May and the late of August for red pepper, and at any stage between the late of August and the late September for radish. 3.The magnitude of evapotranspiration and its coefficient for red pepper was occurred large in order of pF1.7-2.0 pF2.1-2.4 and pF2.5~2.8 in aspect of irrigation point and the difference in the magnitude of evapotranspiration and of its coefficient between levels of irrigation point was difficult to be found out due to the relative increase in water consumption resulted from large flourishing growth at the irrigation point in lower water content for radish. In aspect of soil texture they were appeared large in order of sandy loam, silty clay and sandy soil for both red pepper and radish. 4.The magnitude of leaf area index was shown large in order of pF2.1-2.4, pF2.5-2.8, and pFl.7-2.0, for red pepper and of pF2.5-2.8, pF2.1-2.4, pFl.7-2.0 for radish in aspect of irrigation point, and large in order of sandy loam, silty clay, sandy soil for both red pepper and radish in aspect of soil texture 5.1/10 exceedance probability value of evapotranspiration and its coefficient during the growing period for red pepper were shown as 683.5 mm and 1.03, respectively, while those of radish, 250.3 mm and 0, 99. respectively. 6.The time that the maximum evapotranspiration of red pepper can be occurred is in the middle of August around the date of ninetieth to hundredth after transplanting, and the time for radish is presumed to be in the late of September, around the date of thirtieth to fourtieth after sowing. At that time, 1/10 exceedance probability value of ten day evapotranspiration and its coefficient for red pepper is assumed to be 81.8 mm and 1.22, respectively, while those of radish, 49, 7 mm and 1, 06, respectively. 7.Optimum irrigation point for red pepper on the basis of the yield of raw matter is assumed to be pFl.7-2.0 for sandy soil, pF2.5-2.8 for sandy loam, and pF2.1-2.4 for silty clay. while that for radish is appeared to be pF2.5-2.8 in any soil texture used. 8.The soil moisture extraction patterns of red pepper and radish have shown that maximum extraction rates exist at 7 cm deep layer at the beginning stage of growth in any soil texture and that extraction rates of 21 cm to 35 cm deep layer are increased as getting closer to the late stage of growth. And especially the extraction rates have shown tendency to be greatest at 21cm deep layer from the most flourishing stage of growth for red pepper and at the last stage of growth for radish. 9.The total readily available moisture on the basic of the optimum irrigation point become 3.77-8.66 mm for sandy soil, 28.39-34.67 mm for sandy loam and 18.40-25.70 mm for silty clay for red pepper of each soil texture used but that of radish that has shown the optimum irrigation point of pF2.5-2.8 in any soil texture used. 12.49-15.27 mm for sandy soil, 23.03-28.13 mm for sandy loam, and 22.56~27.57 mm for silty clay. 10.On the basis of each optimum irrigation point. the intervals of irrigation date at the growth stage of maximum consumptive use of red pepper become l.4 days for sandy soil, 3.8 days for sandy loam and 2.6 days for silty clay, while those of radish, about 7.2 days.

  • PDF

Comparison of Storability of Some Sprout Vegetables in MA Storage (MA저장중 몇가지 싹기름 채소의 저장성 비교)

  • Kang, Ho-Min;Kim, Il-Seop
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.415-419
    • /
    • 2007
  • This study was conducted to compare the storability of some sprout vegetables; alfalfa, broccoli, radish, red-cabbage, and red-radish, packed with 50 low density polyethylene (LDPE) film in MA storage. Most of all 5 different sprout vegetable crops maintained the fresh weight higher than 99% until 10 days storage at 2 and $8^{\circ}C$. The carbon dioxide concentration in packages was higher at 8 than at $2^{\circ}C$. It was higher in radish and red-radish sprouts than other crops. As the oxygen concentration showed opposite trends to carbon dioxide, that of radish and red-radish sprouts decreased more than 3% after 3 days in 8 storage. Ethylene concentration in the packages of alfalfa was 0.1 ppm, significantly higher than other four crops with less than 1.0 ppm. Temperature treatment, however, did not influence the ethylene concentration in packages. The radish and red-radish sprouts, with lowest oxygen concentration in package, showed lowest off-flavor compared to the others. The visual quality of these sprouts in packages showed higher at $2^{\circ}C\;than\;at\;8^{\circ}C$ and was maintained the highest in radish sprouts, followed by red-radish, broccoli, red-cabbage, and alfalfa sprouts in that order. In conclusion, as the sprout vegetables have different shelf-life, of which radish was $4{\sim}5$ days longer than that of alfalfa the distributed condition of sprout vegetables should be differently controlled according to kinds of crops.

Quality Characteristics and Antioxidant Activity of Red Radish (Bordeaux and Watermelon Radish) Tea with Use of Different Processing Methods (가공방법이 다른 자색무(보르도무, 수박무)차의 품질 특성 및 항산화 활성)

  • Joo, Shin-Youn;Park, Jong-Dae;Choi, Yun-Sang;Sung, Jung-Min
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.5
    • /
    • pp.908-915
    • /
    • 2017
  • This study was performed to determine the effects of different processing methods (AD: drying at $50^{\circ}C$ for 15 h; ADR: roasting after drying; SAD: drying after steaming; SADR: roasting after steaming and drying) on the quality characteristics, total phenolic content, anthocyanin content, DPPH radical scavenging activity, and reducing powder of red radish (Bordeaux and watermelon radish) tea. The pH of red radish tea was the highest with SAD. In terms of the total sugar content, Bordeaux radish tea showed the highest level with AD, ADR, and SAD, and watermelon radish tea showed the highest level with SADR. The a value of Bordeaux radish tea was higher with AD and ADR. The b value of Bordeaux radish tea was increased with steaming and roasting treatment. In terms of measuring the colors of watermelon radish tea, the L value was decreased while the b value was increased with roasting treatment. The total phenolic content, DPPH radical scavenging activity, and reducing powder with ADR and SADR were higher than those in samples prepared by different processing methods. AD and SAD resulted in higher anthocyanin contents than ADR and SADR. In terms of sensory evaluation, the appearance and color were rated higher with AD and SAD, whereas the flavor and taste were ranked higher with ADR and SADR than in the other samples. The results suggest that red radish (Bordeaux and watermelon radish) tea prepared by ADR and SADR processing methods can be utilized as health functional tea material with antioxidant activity.

Antioxidant contents and activities of twelve varieties of vegetable sprouts

  • Park, Hyunjeong;Shin, Youngjae;Kim, Young-Jun
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.207-213
    • /
    • 2019
  • This study was conducted to investigate the antioxidant contents and activities of twelve vegetable sprouts (broccoli, red radish, radish, mizuna, kale, taatsai, pak choi, Chinese cabbage, turnip, rapeseed, chicory, and alfalfa). The total flavonoid contents of the broccoli, red radish, and radish sprout were $25.36{\pm}0.13$, $25.26{\pm}1.80$, and $25.16{\pm}1.25mg$ CE/100 g FW, respectively, and were significantly higher than those of the other tested vegetables. Radish sprouts had the highest total phenolic content (112.42 mg GAE/100 g FW), followed by red radish and broccoli sprouts. The main polyphenols in the vegetable sprouts were epicatechin and chlorogenic acid, but they varied across sprout varieties. The correlation between total flavonoids and total phenolics for the 12 vegetable sprouts was very high (r=0.926). The total antioxidant activity (DPPH and ABTS radical scavenging activities) was also highly correlated with total flavonoids and total phenolics.

A Historical Study of Korean Traditional Radish Kimchi (한국의 무김치에 관한 역사적 고찰)

  • Cho, Woo-Kyoun
    • Journal of the Korean Society of Food Culture
    • /
    • v.25 no.4
    • /
    • pp.428-455
    • /
    • 2010
  • Radish kimchi is a typical side-dish in Korean traditional food and is a way of keeping vegetables for a extended period using fermentation. This study examined the classification, usage, eating history, variety, and recipes of Korean radish kimchi through ancient and modern era literature. The Korean radish kimchi were categorized into six groups: kkakttugi, seokbakji (or nabakkimchi), dongchimi, jjanji, jangachi, and jangkwa. According to the record, the eating history of radish kimchi comes from before the age of the Three Kingdom period. Radish was preserved in salt, vinegar, soybean paste or lees of fermented liquor in the early times. This pickled radish was not supposed to be watery. Radish kimchi was divided into watery kimchi (dongchimi) during the period of United Silla and the Koryo Dynasty. Kimchi was mixed with Chinese cabbage to make seokbakji or nabakkimchi. Up to the early Chosun Dynasty, the key ingredient of kimchi was radish. After the middle of the Chosun Dynasty, kimchi was mixed with red pepper powder, salted fish, soybean sauce, and various ingredients. There were many kinds of radish kimchi during the late Chosun Dynasty. In the 11 Korean recipe books published within the past 100 years, there are nine kinds of kkakttugi, three kinds of seokbakji, four kinds of dongchimi, three kinds of jjanji, nine kinds of jangachi, and five kinds of jangkwa. Kkakttugi (cubed, sliced or julienne radish) was pickled with salt, red pepper powder, garlic, green onion, oyster, sugar, salted fish, and more. Seokbakji and nabakkimchi were not as salty, so they could not be preserved as long. Dongchimi (watery radish kimchi without red pepper powder) was made of radish, water, salt, 18 side ingredients, 13 condiments, and seven garnishes. Jjanji was pickled to be very salty and was eaten during summer. Jangachi can be used as a regular side dish and is made of radish or dried radish slices pickled or seasoned with salt, soy sauce, vinegar, soybean paste, lees of fermented liquor, and spices. Jangkwa is used as a stir-fry method and has been segregated from jangachi relatively recently.

Standardization of Manufacturing Method of Young Radish Kimchi (Yulmoo Kimchi) and Young Radish Watery Kimchi (Yulmoo Mool-Kimchi) in Literatures (문헌에 나타난 열무김치 및 열무물김치 제조 방법의 표준화)

  • Kong, Chang-Suk;Kim, Do-Kyoung;Rhee, Sook-Hee;Rho, Chi-Woong;Hwang, Hae-Jun;Choi, Keyng-Lag;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.1
    • /
    • pp.126-130
    • /
    • 2005
  • Manufacturing method and ingredient ratio for young radish kimchi (yulmoo kimchi) and young radish watery kimchi (yulmoo mool-kimchi) were standardized from literatures. Ingredients having frequency of use greater than 50% were only used in the standardization process. Green onion, red pepper, red pepper powder, garlic, ginger, and anchovy juice were included in young radish kimchi. Green pepper, red pepper, garlic, ginger, and starch were included in young radish watery kimchi. The standardized ingredients ratio of young radish kimchi (yulmoo kimchi) on young radish 100 g was as follows: green onion 8.0$\pm$3.8, crushed garlic 2.9$\pm$1.3, crushed ginger 1.6$\pm$0.7, red pepper 7.0$\pm$1.7, red pepper powder 4.2$\pm$1.2, and anchovy juice 3.7$\pm$0.5. The standardized ingredients ratio of young radish watery kimchi (yulmoo mool-kimchi) on added water 100 mL was as follows: young radish 50.6:$\pm$10.8, crushed garlic 3.0$\pm$0.7, crushed ginger $1.5\pm$0, green onion 3.3$\pm$1.3, green pepper 3.3$\pm$1.9, red pepper 2.4$\pm$1.3, and starch $1.5\pm$0.6.

Effect of Irradiation of Red Radish Seeds on the Seed Viability and Functional Properties of Sprouts

  • Waje, Catherine K.;Park, Ju-Hwan;Kim, Gui-Ran;Kim, Yu-Ri;Han, Bum-Soo;Lee, Yeon-Kyung;Moon, Kwang-Deog;Kwon, Joong-Ho
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.390-395
    • /
    • 2009
  • Red radish seeds were irradiated at doses up to 8 kGy using electron beam (e-beam) and gamma ray ($\gamma$-ray). The seed viability and functional properties (carotenoid, chlorophyll, ascorbic acid, and total phenol) of sprouts grown from these irradiated seeds were evaluated. High germination percentage ($\geq$97%) was observed in seeds irradiated at $\leq$5 kGy, but the yield ratio and sprout length significantly decreased with increased irradiation dose. Irradiation at $\geq$6 kGy resulted in curling of the sprout roots. Sprouting enhanced the functional properties of red radish seeds as indicated by the increased carotenoid, chlorophyll, ascorbic acid, and total phenol contents during germination. However, radiation treatment hampered the growth of seeds resulting in underdeveloped sprouts with decreased carotenoid, chlorophyll, ascorbic acid, and total phenol contents. In general, e-beam and $\gamma$-ray irradiation of red radish seeds showed similar effects on the seed viability and functional properties of sprouts. Postharvest storage reduced the functional quality of sprouts.

Effects of Saline Irrigation Water on Crop Growth in Strawberry and Red Radish (딸기 및 적환무의 관개용수 염도수준에 따른 생육영향 분석)

  • Kim, Soo-Jin;Bae, Seung-jong;Kim, Hakkwan;Jeong, Hanseok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.85-94
    • /
    • 2020
  • Since the salinity of irrigation water is a critical constraint to the production of certain vegetable crops, salinity was considered as one of the most important factors of irrigation water. The purpose of this study were to monitor and assess the effects of saline irrigation water on strawberry and red radish growth in protected cultivation. One control and three treatments, which were differentiated according to the level of salinity in irrigated water, were employed for each vegetable to assess the effects of the irrigation with saline water. Monitoring has shown that using irrigation water with salinity above a certain level causes excessive accumulation of sodium (Na+) in both strawberry and red radish. Increased Na+ content was analyzed to be able to decrease the sugar content in strawberry. In addition, the salinity higher than the threshold level of irrigation water was found to reduce the growth and yield of strawberry and red radish. This study could contribute to suggest criteria for safe use of saline water in protected cultivation, although long-term monitoring is needed to get more representative results.

Anti-Obesity Effect of Red Radish Coral Sprout Extract by Inhibited Triglyceride Accumulation in a Microbial Evaluation System and in High-Fat Diet-Induced Obese Mice

  • Lee, Nam Keun;Cheon, Chun Jin;Rhee, Jin-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.397-400
    • /
    • 2018
  • Rhodosporidium toruloides, an oleaginous yeast, can be used as a fast and reliable evaluation tool to screen new natural lipid-lowering agents. Herein, we showed that triglyceride (TG) accumulation was inhibited by 42.6% in 0.1% red radish coral sprout extract (RRSE)-treated R. toruloides. We also evaluated the anti-obesity effect of the RRSE in a mouse model. The body weight gain of mice fed a high-fat diet (HFD) with 0.1% RRSE (HFD-RRSE) was significantly decreased by 60% compared with that mice fed the HFD alone after the 8-week experimental period. Body fat of the HFD-RRSE-fed group was dramatically reduced by 38.3% compared with that of the HFD-fed group.

Optimization of the Preparation of Domestics Wheat Cookies by Addition of Red Radish (Raphanus sativus L.) Sprout Powder (어린잎 적양무가루를 첨가한 우리밀 쿠키의 제조조건 최적화)

  • Cheon, Chun Jin;Kim, Young-Ho;Oh, Jong Chul;Kim, Jin Kon;Yu, Hyeon Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.441-450
    • /
    • 2013
  • The purpose of this study was optimization of the conditions for mixing different amounts of red radish (Raphanus sativus L.) sprout powder, butter, and sugar when baking domestic wheat cookies prepared using red radish sprout powder. Response surface methodology, with a central composite design comprising 5 levels and 3 variables, was used to identify the best possible combination of amounts of red radish sprout powder ($X_1$), butter ($X_2$), and sugar ($X_3$). The physical and mechanical properties of each of the 20 samples analyzed, including color L (p<0.001), color a (p<0.01), color b (p<0.001), spread ratio (p<0.001), and hardness (p<0.01), differed significantly. The results of sensory evaluations, including color (p<0.001), appearance (p<0.001), texture (p<0.001), flavor (p<0.01), taste (p<0.001), and overall quality (p<0.001) also differed significantly among the samples. The optimal compositional ratios were 5.15 g for the red radish sprout powder, 64.84 g for the butter, and 47.18 g for the sugar.