• Title/Summary/Keyword: red lamp

Search Result 133, Processing Time 0.026 seconds

Effect of Light-emitting Diodes on Photosynthesis and Growth of in vitro Propagation in Tea Tree (Camellia sinensis L.) (LED 광질이 차나무 기내배양묘의 생육 및 광합성에 미치는 영향)

  • Im, Hyeon-Jeong;Na, Chae-Sun;Song, Chi-Hyeon;Won, Chang-O;Song, Ki-Seon;Hwang, Jung-Gyu;Kim, Do-Hyun;Kim, Sang-Geun;Kim, Hyun-Chul
    • Journal of agriculture & life science
    • /
    • v.53 no.6
    • /
    • pp.13-21
    • /
    • 2019
  • The influences of light generated by LEDs on shoot growth and photosynthesis of Tea plant(Camellia sinensis L.) were evaluated. The growth characteristics were investigated after 45 days of culture under four different light qualities: fluorescent lamp, red LED, blue LED, red+blue+white LED. Shoot growth was promoted by red light, especially root length and area were further promoted under the red+blue+white LED. Also, T/R ratio and Chlorophyll content were highest in red+blue+white. Fluor Cam was used to measure the fluorescence images of the plants, inhibition of photochemical efficiency(Fv/Fm) were not changed in all treatment. However, non-photochemical quenching(NPQ) were found rapidly increasing in blue LED, these results were that blue LED were inhibit photosynthetic efficiency and must be considered for efficiently in vitro cultivation of the tea plant. The above results suggest that light qualities could be an important factor to foster in vitro growth of the species. Also, In order to produce healthy plants, it is effective to using light qualities of red+blue+white LED on in vitro culture of the tea plant. These results could be used to mass propagating shoot and produce of healthy seedling.

Effect of LED and QD-LED(Quantum Dot) Treatments on Production and Quality of Red Radish(Raphanus sativus L.) Sprout (LED와 QD-LED(Quantum Dot) 광처리가 적무 새싹의 생산과 품질에 미치는 영향)

  • Choi, In-Lee;Wang, Lixia;Lee, Ju Hwan;Han, Su Jung;Ko, Young-Wook;Kim, Yongduk;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.265-272
    • /
    • 2019
  • The purpose of this study was to investigate the effects of LED and QD-LED (Quantum Dot) irradiation on seed germination, antioxidant ability, and microbial growth, during red radish (Raphanus sativus L.) sprouts cultivation. Irradiated light was blue, red, blue + red and blue + red + far red (QD-LED) lights, and the controls were a fluorescent lamp (FL), and dark condition. Germination rate of red radish was highest in the dark condition. The plant height and fresh weight of red radish sprouts that irradiated each light for 24 hrs after 7 days growing in dark condition, did not shown significantly difference among treatments. After 24 hrs of light irradiation, cotyledon green was best in blue + red light, and the red hypocotyl was excellent in blue light and QD-LED light. DPPH and phenol contents were high in dark and blue + red light treatment, and anthocyanin content was high in blue light and QD-LED light. Total aerobic counts were similar in all treatments and did not show bactericidal effect, whereas E. coli count was lowest in QD-LED light treatment, and yeast and mold counts were lowest in FL only treatment. Results suggest that when red radish seeds were germinated in dark condition and cultivated for 7 days as sprouts, and then treated with blue light or QD-LED light for 24 hrs, the seeds produced good quality red radish sprouts with greenish cotyledon, reddish hypocotyl, high anthocyanin content, and lower level of E coli contamination.

A Literatural Study on the Evidence of Using Thermotherapy and Cryotherapy of Cutaneous and Muscle Meridian in Korean Medical Physiotherapy (한방이학요법 중 경피경근온냉요법에 대한 문헌적 고찰)

  • Choi, Bo-Mi;Hong, Seo-Young
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.20 no.4
    • /
    • pp.73-81
    • /
    • 2010
  • Objectives : The purpose of this study is to establish literatural evidence about thermotherapy and cryotherapy for Korean medicine through literatural review. Methods : Applicable paragraphs which were related to the thermotherapy and cryotherapy of cutaneous and muscle meridian were phrased from in "Yibujicheng(醫部集成) and "Dongyibaojian(東醫寶鑑)" where were archiving of Oriental or Korean medicine literatures. Searched paragraphs were analysed for establishing historical and theoretical bases of thermotherapy and cryotherapy in Korean medicine. Results : Thermotherapy of cutaneous and muscle meridian(經皮經筋溫熱療法) such as hot pack, warm water therapy, paraffin bath, ultrasound is originated from yu(慰) warm water(溫水) hot water(熱水). Matching indications are various pain conditions(caused by coldness(寒), hard-work(僗若), extravasated blood(瘀血), inflammatory skin disease, frostbite and several internal diseases. It also treats gynecological diseases and facial palsy. Diathermic therapy on acupuncture points(穴位照射溫熱療法) such as infra-red, microwave, shortwave is originated from huolu(火爐), wenlu(溫爐), xianglu(香爐), lamp light(燈火). Its objective is to improve the effects of herb medicine by aiding sweating or to treat the residual symptoms of fever disease or to care skin disease and pain from bone fracture, contusion. Cryotherapy of cutaneous and muscle meridian(經皮經筋溫寒冷療法) such as ice pack, ice spray, iced whirpool, cool water bath is originated from lengfu(冷敷), lengtie(冷貼), lengshiyu(冷石熨). Matching indications are contusions, animal bite injury, corn(肉刺) and (淋病), eye disease, nasal bleeding, hemorrhoid, inflammatory skin disease and chicken pox. Conclusions : Thermotherapy and cryotherapy of cutaneous and muscle meridian(經皮經筋溫冷療法) are the treatments which were used in Korean medicine from the ancient Korean medicine. As scientific equipments were originated from yu(慰), huolu(火爐), wenlu(溫爐), xianglu(香爐), lamp light(燈火). lengfu(冷敷), lengtie(冷貼), lengshiyu(冷石熨). It can be said that these are elements of Korean medicine. More rigorous studies are needed to establish clinical evidence about not only thermotherapy and cryotherapy but also the other physiotherapy of Korean medicine.

Thermal Transfer Pixel Patterning by Using an Infrared Lamp Source for Organic LED Display (유기 발광 소자 디스플레이를 위한 적외선 램프 소스를 활용한 열 전사 픽셀 패터닝)

  • Bae, Hyeong Woo;Jang, Youngchan;An, Myungchan;Park, Gyeongtae;Lee, Donggu
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.27-32
    • /
    • 2020
  • This study proposes a pixel-patterning method for organic light-emitting diodes (OLEDs) based on thermal transfer. An infrared lamp was introduced as a heat source, and glass type donor element, which absorbs infrared and generates heat and then transfers the organic layer to the substrate, was designed to selectively sublimate the organic material. A 200 nm-thick layer of molybdenum (Mo) was used as the lightto-heat conversion (LTHC) layer, and a 300 nm-thick layer of patterned silicon dioxide (SiO2), featuring a low heat-transfer coefficient, was formed on top of the LTHC layer to selectively block heat transfer. To prevent the thermal oxidation and diffusion of the LTHC material, a 100 nm-thick layer of silicon nitride (SiNx) was coated on the material. The fabricated donor glass exhibited appropriate temperature-increment property until 249 ℃, which is enough to evaporate the organic materials. The alpha-step thickness profiler and X-ray reflection (XRR) analysis revealed that the thickness of the transferred film decreased with increase in film density. In the patterning test, we achieved a 100 ㎛-long line and dot pattern with a high transfer accuracy and a mean deviation of ± 4.49 ㎛. By using the thermal-transfer process, we also fabricated a red phosphorescent device to confirm that the emissive layer was transferred well without the separation of the host and the dopant owing to a difference in their evaporation temperatures. Consequently, its efficiency suffered a minor decline owing to the oxidation of the material caused by the poor vacuum pressure of the process chamber; however, it exhibited an identical color property.

Growth and changes in the biochemical composition of Isochrysis galbana under different light-emitting diode conditions

  • BAE, Jae-Hyun;AN, Heui-Chun;PARK, Heum-Gi;PARK, Jin-Chul;PARK, Jong-Myung;LEE, Kyoung-Hoon;HONG, Sung-Eic
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.4
    • /
    • pp.475-483
    • /
    • 2015
  • The marine microalgae Isochrysis galbana was cultured under various light-emitting diode (LED) light conditions with different wavelengths to examine changes in growth and in amino acid and fatty acid profiles. The culture conditions for the microalgae were Conway medium, salinity of 33 psu, temperature of $24^{\circ}C$, and a 16/8 h light/dark photoperiod. Six light sources, including 5 units of 180W LED lamps (peak wavelength: blue [LB] 470 nm; green [LG] 525 nm; yellow [LY] 595 nm; red [LR] 636 nm; white [LW] 442 nm) and 1 unit of a 175W metal halide (MH) lamp, were used for the experiment. The dry cell weights ($gL^{-1}$) of I. galbana under different light conditions were in the order of LW>LB${\geq}$MH>LR>LG>LY. Levels of essential amino acids were revealed to be significantly higher under LW, LG, and MH than under the other wavelengths (P<0.05). The fatty acid, unsaturated fatty acid, and DHA contents of I. galbana were higher under MH, LW, and LG. In addition, the carotenoid content was higher under MH, LW, and LG than under the other wavelengths (P<0.05). The fucoxanthin content was highest under MH (0.28%) and lowest under LY (0.2%), and it was 0.26% under LW and LG. The results indicate that the combined use of LW and LG is effective when using LED lamps for I. galbana cultivation.

Effects of Artificial Light Sources on the Photosynthesis, Growth and Phytochemical Contents of Butterhead Lettuce (Lactuca sativa L.) in the Plant Factory (식물공장에서 인공광원의 종류가 반결구상추의 광합성, 생육 및 기능성물질 함량에 미치는 영향)

  • Kim, Dong Eok;Lee, Hye Jin;Kang, Dong Hyeon;Lee, Gong In;Kim, You Ho
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.392-399
    • /
    • 2013
  • This study aimed to investigate responses of photosynthesis, plant growth, and phytochemical contents to different artificial light sources for 'Seneca RZ' and 'Gaugin RZ' two butterhead lettuce (Lactuca sativa L.). In this study, fluorescent lamps (FL), three colors LEDs (red, blue and white, 5 : 4 : 1; RBW) and metalhalide lamps (MH) were used as artificial lighting sources. Photoperiod, air temperature, relative humidity, EC, and pH in a cultivation system were maintained at 16/8 h, $25/15^{\circ}C$, 60~70%, $1.4{\pm}0.2dS{\cdot}m^{-1}$, and $6.0{\pm}0.5$, respectively. The photosynthetic rate of both two butterhead lettuce were the highest under RBW in middle growth stage. However, in late growth stage, the photosynthetic rate of both two butterhead lettuce were higher under RBW and MH than FL. The light sources showed significant results for plant growth but those effects were different to variety. Fresh and dry weight of 'Gaugin RZ' butterhead lettuce under MH were heavier than other lights in all growth stages. Growth of 'Seneca RZ' butterhead lettuce was maximized highest under MH in middle growth stage and FL in late growth stage. In the leaf tissue of 'Seneca RZ' butterhead lettuce, tipburn symptom occurred under all light sources and in the leaf tissue of 'Gaugin RZ' butterhead lettuce, it occurred under two light sources except for fluorescent lamps in late growth stage. kinds of lamp affect plant growth more than plant quality. Relative growth rate of both two butterhead lettuce was faster in middle growth stage than late stage. Growth of 'Gaugin RZ' was shown by kinds of lamp in middle growth stage and but it was not significantly affected by light sources and variety in late stage. Most of the phytochemical contents of two butterhead lettuce were significantly affected by different light sources. Contents of all vitamins showed higher than other light sources on RBW for both two lettuce, especially ${\beta}$-Carotene content of 'Gaugin RZ' was the highest. Plant growth, photosynthesis, and phytochemical contents were observed significant effects by different light sources for two butterhead lettuce but those effects were highly different between variety and kinds of phytochemicals. Therefore, the selection of optimum light source should be considered by variety and kinds of phytochemicals in the plant factory.

Selection of Supplemental Light Source for Greenhouse Cultivation of Pepper during Low Radiation Period through Growth and Economic Analysis (생육 및 경제성 분석을 통한 약광기 고추의 온실재배를 위한 적정 보광 광원 선정)

  • Hwang, Hee Sung;Lee, Kwang Hui;Jeong, Hyeon Woo;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.204-211
    • /
    • 2022
  • To produce a high quality crop, light is an essential environmental factor in greenhouse cultivation. In the winter season, solar radiation is weak than other season. Therefore, using supplemental light during a low radiation period can increase the crop growth and yield. This study was conducted to select the economical supplemental light source for greenhouse cultivation in pepper during the low radiation period. The green pepper (Capsicum annuum 'Super Cheongyang') was transplanted on 5 September 2019. Supplemental lighting treatment was conducted from 1 January 2020 to 31 March 2020. RB LED (red and blue LED, red:blue = 7:3), W LED (white LED, R:G:B = 5:3:2), and HPS (high-pressure sodium lamp) were used as the supplemental light source. Non-treatment was used as the control. The plant height, SPAD, and number of nodes of pepper plants have no significant differences by supplemental light sources. However, the number of ramifications plants was the greatest in RB LED light source. Moreover, supplemental lighting increased photosynthesis of the pepper plant, and especially, the RB LED had the highest photosynthesis rate during supplemental lighting period. Also, the yield of pepper increased in the supplemental lighting treatment than in the control, and the RB LED had the greatest yield than other light sources. The electricity consumption was the highest in W LED and the lowest in HPS light. Through the economic analysis, the RB LED had high economic efficiency. In conclusion, these results suggest that using RB LED for supplemental light source during low radiation in pepper greenhouse increase the yield and economic feasibility.

In Vitro Effect on Light Qualities and Lighting Types Provided by Light-Emitting Diodes (LEDs) for the Mycelia Growth of Soil-Borne Fungal Pathogens in Apple (기내에서 Light-Emitting Diodes(LEDs)를 이용한 광질과 광조사 방법이 사과 토양병원균의 균사생장에 미치는 영향)

  • Lee, Sung-Hee;Kwon, Yeuseok;Shin, Hyunman;Chang, Whobong;Nam, Sang-Yeong;Hong, Eui Yon;Cha, Jae-Soon;Heo, Jeong Wook
    • Research in Plant Disease
    • /
    • v.22 no.2
    • /
    • pp.100-106
    • /
    • 2016
  • We have studied the mycelia growth of four soil-borne fungal pathogens under light qualities and two lighting types (continuous and intermittent) provided by light-emitting diodes (LEDs). As a result, each mycelia growth on Phytophthora cactorum KACC40166, Athelia rolfsii KACC40170, and Helicobasidium mompa KACC40836 strain showed the similar growth rates within 10% or less difference among treatments compared to dark control, regardless of lighting types. However, the mycelia growth on Rosellinia necatrix KACC40168 strain was significantly suppressed by blue, blue+green and blue+red LED as well as fluorescent lamp compared to a dark control, in common with lighting types. The melanin pigment on R. necatrix KACC40168 strain showed relatively to induce more strongly under green LED and fluorescent lamp, whereas no induction under red LED and a control, regardless of lighting types. Thus, the hypha width on R. necatrix KACC40168 was significantly thinned by blue and blue+green LED compared to a control, in common with lighting types.

Luminescence Characteristics of Mg2+·Ba2+ Co-Doped Sr2SiO4:Eu Yellow Phosphor for Light Emitting Diodes (LED용Mg2+·Ba2+Co-Doped Sr2SiO4:Eu 노란색 형광체의 발광특성)

  • Choi, Kyoung-Jae;Jee, Soon-Duk;Kim, Chang-Hae;Lee, Sang-Hyuk;Kim, Ho-Kun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.147-151
    • /
    • 2007
  • An improvement for the efficiency of the $Sr_{2}SiO_{4}:Eu$ yellow phosphor under the $450{\sim}470\;nm$ excitation range have been achieved by adding the co-doping element ($Mg^{2+}\;and\;Ba^{2+}$) in the host. White LEDs were fabricated through an integration of an blue (InGaN) chip (${\lambda}_{cm}=450\;nm$) and a blend of two phosphors ($Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor) in a single package. The InGaN-based two phosphor blends ($Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor) LEDs showed three bands at 450 nm, 550 nm and 640 nm, respectively. The 450 nm emission band was due to a radiative recombination from an InGaN active layer. This 450 nm emission was used as an optical transition of the $Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor. As a consequence of a preparation of white LEDs using the $Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor yellow phosphor and CaS:Eu red phosphor, the highest luminescence efficiency was obtained at the 0.03 mol $Ba^{2+}$ concentration. At this time, the white LEDs showed the CCT (5300 K), CRI (89.9) and luminous efficacy (17.34 lm/W).

The Effects of the Light Quality of a Light Emitting Diode (LED) on the Phosphate Uptake of Prasinophytes Tetraselmis suecica and Tetraselmis tetrathele (담녹조강 Tetraselmis suecica와 Tetraselmis tetrathele의 인산염 흡수에 미치는 발광다이오드 파장의 영향)

  • Han, Kyong Ha;Oh, Seok Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.96-101
    • /
    • 2019
  • This study was conducted to investigate the effects of the light quality of a Light Emitting Diode (LED) on the phosphate uptake of Prasinophytes Tetraselmis suecica and Tetraselmis tetrathele. These species were exposed to a blue LED (max = 450 nm), a yellow LED (max = 590 nm), a red LED (max = 630 nm) and a fluorescent lamp (control) at $100{\mu}mol\;m^{-2}\;s^{-1}$. The maximum uptake rates (${\rho}_{max}$) of T. suecica and T. tetrathele under the red LED were $6.35pmol\;cell^{-1}\;hr^{-1}$ and $9.85pmol\;cell^{-1}\;hr^{-1}$, respectively. The half saturation constants (Ks) of two species were $9.43{\mu}M$ and $21.2{\mu}M$, respectively. The phosphate affinity of the two species under the red LED was higher than that of other wavelengths. Thus, the optimum light source to ensure economically effective and productive growth in a Tetraselmis culture system (Photo-Bioreactor) would be red LEDs because of the high growth rate shown, regardless of relatively low nutrient conditions.