• Title/Summary/Keyword: red ginseng extract

Search Result 622, Processing Time 0.029 seconds

Korean Red Ginseng (Panax ginseng Meyer) with enriched Rg3 ameliorates chronic intermittent heat stress-induced testicular damage in rats via multifunctional approach

  • Kopalli, Spandana Rajendra;Cha, Kyu-Min;Hwang, Seock-Yeon;Jeong, Min-Sik;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.135-142
    • /
    • 2019
  • Background: Panax ginseng Meyer, known as Korean Red Ginseng (KRG), is one of the important age-old traditional herbs used in boosting libido and improving male fertility. In this study, the effects of Rg3-enriched KRG extract (KGC04P) on heat stress-induced testicular damage in experimental rats was evaluated. Methods: Male rats (Sprague-Dawley) were divided into four groups (n = 10): normal control (NC), heat-stressed control (HC), heat-stressed plus KGC04P-100 mg/kg (HK100), and heat-stressed plus KGC04P-200 mg/kg (HK200) groups. Starting 1 week prior to heat stress, animals were administered orally with KGC04P (100 and 200 mg/kg) mixed with a regular pellet diet and continued for 25 weeks. Heat stress was induced to HC, HK100, and HK200 groups by intermittently exposing the animals to high temperatures ($32{\pm}1^{\circ}C$, 2 h/day). After 6 months, animals were euthanized under general anesthesia with carbon dioxide and evaluated for various parameters in serum and testicular tissue by using Western blotting, biochemical kits, and reverse transcription-polymerase chain reaction. Results: Significant (p < 0.05) alterations in several parameters, such as body/organ weight, sperm kinematics, and lipid metabolism marker levels, in the serum and testis of rats were observed. Further, the expression of testicular antioxidant enzymes, inflammatory cytokines, sex hormonal receptors, and spermatogenesis-related genes were also affected significantly (p < 0.05) in the heat-stressed group. However, KGC04P prevented the heat stress-induced changes in rats significantly (p < 0.05) at both concentrations. Conclusion: KGC04P attenuated heat stress-induced testicular damage by a multifunctional approach and can be developed as an excellent therapeutic agent for hyperthermia-mediated male infertility.

Korean Red Ginseng attenuates ultraviolet-mediated inflammasome activation in keratinocytes

  • Ahn, Huijeong;Han, Byung-Cheol;Hong, Eui-Ju;An, Beum-Soo;Lee, Eunsong;Lee, Seung-Ho;Lee, Geun-Shik
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.456-463
    • /
    • 2021
  • Background: Keratinocytes form a physical barrier and act as an innate immune cell in skin. Keratinocytes secrete pro-inflammatory cytokines, such as interleukin (IL)-1β, resulting from inflammasome activation when exposed to ultraviolet (UV) irradiation. Korean Red Ginseng extracts (RGE) have been well-studied as modulators of inflammasome activation in immune cells, such as macrophages. In the study, we elucidated the role of RGE on the UV-mediated inflammasome activation in keratinocytes compared with that in macrophages. Methods: Human skin keratinocyte cells (HaCaT), human epidermal keratinocytes (HEK), human monocyte-like cells (THP-1), and mouse macrophages were treated with RGE or a saponin fraction (SF) or non-saponin fraction (NS) of RGE before and after UV irradiation. The secretion levels of IL-1β, as an indicator of inflammasome activation, were analyzed. Results: The treatment of RGE or SF in macrophages after UV irradiation inhibited IL-1β secretion, but similar treatment in HaCaT cells did not. However, the treatment of RGE or SF in HaCaT cells in the presence of poly I:C, a toll-like receptor (TLR) 3 ligand, before UV exposure elicited the inhibition of the IL-1β secretion. The inhibition was caused by the disruption by RGE or SF of the TLR mediating up-regulation of the pro-IL-1β and NLRP3 genes during the priming step. Conclusion: RGE and its saponins inhibit IL-1β secretion in response to UV exposure in both keratinocytes and macrophages. In particular, RGE treatment interrupted only the priming step in keratinocytes, although it did attenuate both the priming and activation steps in macrophages.

The effect of Korean red ginseng extract on the growth of Saccharomyces cerevisiae IAM and Saccharomyces (홍삼성분(紅蔘成分)이 주정효모(酒精酵母)의 생리(生理)에 미치는 영향)

  • Sung, Hyun-Soon;Nam, Sang-Yeal;Kim, Ki-Choul
    • Applied Biological Chemistry
    • /
    • v.23 no.4
    • /
    • pp.228-241
    • /
    • 1980
  • The red ginseng extract and its components were investigated for their activation effects on the growth of Saccharomyces cerevisiae IAM and Saccharomyces formosensis No. 396 IAM. Changes in the number of cells, alcohol production, $CO_2$ evolution, pH and the rate of sugar consumption and of fermentation were compared during growth at $30^{\circ}C$ for 120 hours. The addition of ethanol extract and saponins from red ginseng were found to exihibite a significant increase in all physiological activaties of yeast, and its maximum activites were obtained at 1.5% ethanol extract concentration. The physiological effects of panaxadiol and panaxatriol, two major groups of saponin, were also compared to those of crude saponin and found that the former showed a small increase in physiological changes. However the difference was not significant. The overall contents of ginsenosides of ethanol extract and crude saponin during fermentation were not significantly affected by the growth of roasts, except a small increase in ginsenoside $-Rg_2$ and decrease in -Rd.

  • PDF

산삼의 배양 및 그 응용에 관한 연구

  • 신미희
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.27 no.2
    • /
    • pp.45-56
    • /
    • 2001
  • Korea mountain ginseng known as oriental miracle drug is an important medicinal plant. The effect of mountain ginseng adventitious roots extract has been described. The valuable root of mountain ginseng contained several kinds of ginsenosides that have been confirmed to have many active functions for the human body. However, the study of mountain ginseng has a limit because the price of wild ginseng is very expensive and rare. The mountain ginseng adventitious roots were derived from mountain ginseng callus that were induced from mountain ginseng roots. Adventitious roots were separated from callus and grown in solid media(Murachige and stoog media). It was cultured in a 20L bioreactor. After culturing for 40days, adventitious roots were harvested. Afterwards the harvested mountain ginseng adventitious roots were dryed and extracted. We examined the effect on melanogenesis of mountain ginseng adventitious roots extract. Here, we report the inhibitory effect of melanin biosynthesis on the adventitious roots extract of In vitro test. Also, we assessed the safety of adventitious roots extract. In vitro, cytotoxicity of adventitious roots extract was assessed in mouse fibroblast using two method: The neutral red uptake assay and the MTT assay. In vivo, the allergic and irritant were Patch teated in 30 patients. Consequently, extract of mountain ginseng adventitious roots have inhibitory effect on melanin biosynthesis in B-16 melanoma cell test, tyrosinase inhibitory test and DOPA auto-oxidation test. There were decreased 86%(0.5% concentration), 45%(1% concentration) and 61%(1% concentration), respectively.

  • PDF

Biotransformation of natural polyacetylene in red ginseng by Chaetomium globosum

  • Wang, Bang-Yan;Yang, Xue-Qiong;Hu, Ming;Shi, Li-Jiao;Yin, Hai-Yue;Wu, Ya-Mei;Yang, Ya-Bin;Zhou, Hao;Ding, Zhong-Tao
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.770-774
    • /
    • 2020
  • Background: Fermentation has been shown to improve the biological properties of plants and herbs. Specifically, fermentation causes decomposition and/or biotransformation of active metabolites into high-value products. Polyacetylenes are a class of polyketides with a pleiotropic profile of bioactivity. Methods: Column chromatography was used to isolate compounds, and extensive NMR experiments were used to determine their structures. The transformation of polyacetylene in red ginseng (RG) and the production of cazaldehyde B induced by the extract of RG were identified by TLC and HPLC analyses. Results: A new metabolite was isolated from RG fermented by Chaetomium globosum, and this new metabolite can be obtained by the biotransformation of polyacetylene in RG. Panaxytriol was found to exhibit the highest antifungal activity against C. globosum compared with other major ingredients in RG. The fungus C. globosum cultured in RG extract can metabolize panaxytriol to Metabolite A to survive, with no antifungal activity against itself. Metabolites A and B showed obvious inhibition against NO production, with ratios of 42.75 ± 1.60 and 63.95 ± 1.45% at 50 µM, respectively. A higher inhibitory rate on NO production was observed for Metabolite B than for a positive drug. Conclusion: Metabolite A is a rare example of natural polyacetylene biotransformation by microbial fermentation. This biotransformation only occurred in fermented RG. The extract of RG also stimulated the production of a new natural product, cazaldehyde B, from C. globosum. The lactone in Metabolite A can decrease the cytotoxicity, which was deemed to be the intrinsic activity of polyacetylene in ginseng.

Protective effect of Korean Red Ginseng extract against Helicobacter pylori-induced gastric inflammation in Mongolian gerbils

  • Bae, Minkyung;Jang, Sungil;Lim, Joo Weon;Kang, Jieun;Bak, Eun Jung;Cha, Jeong-Heon;Kim, Hyeyoung
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.8-15
    • /
    • 2014
  • Helicobacter pylori-induced gastric inflammation includes induction of inflammatory mediators interleukin (IL)-8 and inducible nitric oxide synthase (iNOS), which are mediated by oxidant-sensitive transcription factor NF-${\kappa}B$. High levels of lipid peroxide (LPO) and increased activity of myeloperoxidase (MPO), a biomarker of neutrophil infiltration, are observed in H. pylori-infected gastric mucosa. Panax ginseng Meyer, a Korean herb medicine, is widely used in Asian countries for its biological activities including anti-inflammatory efficacy. The present study aims to investigate whether Korean Red Ginseng extract (RGE) inhibits H. pylori-induced gastric inflammation in Mongolian gerbils. One wk after intragastric inoculation with H. pylori, Mongolian gerbils were fed with either the control diet or the diet containing RGE (200 mg RGE/gerbil) for 6 wk. The following were determined in gastric mucosa: the number of viable H. pylori in stomach; MPO activity; LPO level; mRNA and protein levels of keratinocyte chemoattractant factor (KC, a rodent IL-8 homolog), IL-$1{\beta}$, and iNOS; protein level of phospho-$I{\kappa}B{\alpha}$(which reflects the activation of NF-${\kappa}B$); and histology. As a result, RGE suppressed H. pylori-induced mRNA and protein levels of KC, IL-$1{\beta}$, and iNOS in gastric mucosa. RGE also inhibited H. pylori-induced phosphorylation of $I{\kappa}B{\alpha}$ and increases in LPO level and MPO activity of gastric mucosa. RGE did not affect viable H. pylori colonization in the stomach, but improved the histological grade of infiltration of poly-morphonuclear neutrophils, intestinal metaplasia, and hyperplasia. In conclusion, RGE inhibits H. pyloriinduced gastric inflammation by suppressing induction of inflammatory mediators (KC, IL-$1{\beta}$, iNOS), MPO activity, and LPO level in H. pylori-infected gastric mucosa.

Rg3-enriched Korean Red Ginseng extract inhibits blood-brain barrier disruption in an animal model of multiple sclerosis by modulating expression of NADPH oxidase 2 and 4

  • Lee, Min Jung;Choi, Jong Hee;Oh, Jinhee;Lee, Young Hyun;In, Jun-Gyo;Chang, Byung-Joon;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.433-441
    • /
    • 2021
  • Background: Multiple sclerosis (MS) and its animal model, the experimental autoimmune encephalomyelitis (EAE), are primarily characterized as dysfunction of the blood-brain barrier (BBB). Ginsenoside-Rg3-enriched Korean Red Ginseng extract (Rg3-KRGE) is known to exert neuroprotective, anti-inflammatory, and anti-oxidative effects on neurological disorders. However, effects of Rg3-KRGE in EAE remain unclear. Methods: Here, we investigated whether Rg3-KRGE may improve the symptoms and pathological features of myelin oligodendroglial glycoprotein (MOG)35-55 peptide - induced chronic EAE mice through improving the integrity of the BBB. Results: Rg3-KRGE decreased EAE score and spinal demyelination. Rg3-KRGE inhibited Evan's blue dye leakage in spinal cord, suppressed increases of adhesion molecule platelet endothelial cell adhesion molecule-1, extracellular matrix proteins fibronection, and matrix metallopeptidase-9, and prevented decreases of tight junction proteins zonula occludens-1, claudin-3, and claudin-5 in spinal cord following EAE induction. Rg3-KRGE repressed increases of proinflammatory transcripts cyclooxygenase-2, inducible nitric oxide synthase, interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha, but enhanced expression levels of anti-inflammatory transcripts arginase-1 and IL-10 in the spinal cord following EAE induction. Rg3-KRGE inhibited the expression of oxidative stress markers (MitoSOX and 4-hydroxynonenal), the enhancement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and NOX4, and NADPH activity in the spinal cord of chronic EAE mice. Furthermore, apocynin, a NOX inhibitor, mimicked beneficial effects of Rg3-KRGE in chronic EAE mice. Conclusion: Our findings suggest that Rg3-KRGE might alleviate behavioral symptoms and pathological features of MS by improving BBB integrity through modulation of NOX2/4 expression.

Respiratory protective effects of Korean Red Ginseng in a mouse model of particulate matter 4-induced airway inflammation

  • Won-Kyung Yang;Sung-Won Kim;Soo Hyun Youn;Sun Hee Hyun;Chang-Kyun Han;Yang-Chun Park;Young-Cheol Lee;Seung-Hyung Kim
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.81-88
    • /
    • 2023
  • Background: Air pollution has led to an increased exposure of all living organisms to fine dust. Therefore, research efforts are being made to devise preventive and therapeutic remedies against fine dust-induced chronic diseases. Methods: Research of the respiratory protective effects of KRG extract in a particulate matter (PM; aerodynamic diameter of <4 ㎛) plus diesel exhaust particle (DEP) (PM4+D)-induced airway inflammation model. Nitric oxide production, expression of pro-inflammatory mediators and cytokines, and IRAK-1, TAK-1, and MAPK pathways were examined in PM4-stimulated MH-S cells. BALB/c mice exposed to PM4+D mixture by intranasal tracheal injection three times a day for 12 days at 3 day intervals and KRGE were administered orally for 12 days. Histological of lung and trachea, and immune cell subtype analyses were performed. Expression of pro-inflammatory mediators and cytokines in bronchoalveolar lavage fluid (BALF) and lung were measured. Immunohistofluorescence staining for IRAK-1 localization in lung were also evaluated. Results: KRGE inhibited the production of nitric oxide, the expression of pro-inflammatory mediators and cytokines, and expression and phosphorylation of all downstream factors of NF-κB, including IRAK-1 and MAPK/AP1 pathway in PM4-stimulated MH-S cells. KRGE suppressed inflammatory cell infiltration and number of immune cells, histopathologic damage, and inflammatory symptoms in the BALF and lungs induced by PM4+D; these included increased alveolar wall thickness, accumulation of collagen fibers, and TNF-α, MIP2, CXCL-1, IL-1α, and IL-17 cytokine release. Moreover, PM4 participates induce alveolar macrophage death and interleukin-1α release by associating with IRAK-1 localization was also potently inhibited by KRGE in the lungs of PM4+D-induced airway inflammation model. KRGE suppresses airway inflammatory responses, including granulocyte infiltration into the airway, by regulating the expression of chemokines and inflammatory cytokines via inhibition of IRAK-1 and MAPK pathway. Conclusion: Our results indicate the potential of KRGE to serve as an effective therapeutic agent against airway inflammation and respiratory diseases.

Korean Red Ginseng affects ovalbumin-induced asthma by modulating IL-12, IL-4, and IL-6 levels and the NF-κB/COX-2 and PGE2 pathways

  • Lee, Soon-Young;Kim, Min-Hee;Kim, Seung-Hyun;Ahn, Taeho;Kim, Sung-Won;Kwak, Yi-Seong;Cho, Ik-Hyun;Nah, Seung-Yeol;Cho, Seung-Sik;Park, Kyung Mok;Park, Dae-Hun;Bae, Chun-Sik
    • Journal of Ginseng Research
    • /
    • v.45 no.4
    • /
    • pp.482-489
    • /
    • 2021
  • Background: Asthma is an incurable hyper-responsive disease of the pulmonary system that is caused by various allergens, including indoor and outdoor stimulators. According to the Global Asthma Network, 339 million people suffered from asthma in 2018, with particularly severe forms in children. Numerous treatments for asthma are available; however, they are frequently associated with adverse effects such as growth retardation, neurological disorders (e.g., catatonia, poor concentration, and insomnia), and physiological disorders (e.g., immunosuppression, hypertension, hyperglycemia, and osteoporosis). Methods: Korean Red Ginseng has long been used to treat numerous diseases in many countries, and we investigated the anti-asthmatic effects and mechanisms of action of Korean Red Ginseng. Eighty-four BALB/c mice were assigned to 6 treatment groups: control, ovalbumin-induced asthma group, dexamethasone treatment group, and 3 groups treated with Korean Red Ginseng water extract (KRGWE) at 5, 25, or 50 mg/kg/day for 5 days. Anti-asthmatic effects of KRGWE were assessed based on biological changes, such as white blood cell counts and differential counts in the bronchoalveolar lavage fluid, serum IgE levels, and histopathological changes in the lungs, and by examining anti-asthmatic mechanisms, such as the cytokines associated with Th1, Th2, and Treg cells and inflammation pathways. Results: KRGWE affected ovalbumin-induced changes, such as increased white blood cell counts, increased IgE levels, and morphological changes (mucous hypersecretion, epithelial cell hyperplasia, inflammatory cell infiltration) by downregulating cytokines such as IL-12, IL-4, and IL-6 via GATA-3 inactivation and suppression of inflammation via NF-κB/COX-2 and PGE2 pathways. Conclusion: KRGWE is a promising drug for asthma treatment.

Extraction and Concentration Method of Red Ginseng by Vacuum Impulse System (진공력적방식(Vacuum Impulse Stem)을 이용한 홍삼의 추출 방법)

  • Kim Cheon-Suk;Chang Gap-Moon
    • Journal of Ginseng Research
    • /
    • v.23 no.2 s.54
    • /
    • pp.88-92
    • /
    • 1999
  • Hydrolysis properties of ginseng saponins in processing of extraction with vacuum impulse system extraction method were compared with multi-stage extraction methods. Crude saponin content of the extract produced by vacuum impulse system extraction method was $11.5\%,$ compared with multi-stage extraction method (about $8.13\%).$ Also the yield of the extract increased about $6.7\%.$ The flavor and aroma of ginseng extract with vacuum impulse system extraction method are stronger than multi-stage extraction methods and people have a tendency to like more. The color was similar to existing extraction items and the liquidity ratio was high. Vacuum impulse system extraction method could save human resources because of short extraction time and automatic operation of processing. With HPLC pattern, We could ascertain the truth that hydrolysis properties of ginseng saponin was restrained in the extraction processing, vacuum impulse system extraction method.

  • PDF