• Title/Summary/Keyword: red OLEDs

Search Result 85, Processing Time 0.031 seconds

White-light-emitting Organic Electroluminescent Device Based On Incomplete Energy Transfer

  • Song, Tae-Joon;Ko, Myung-Soo;Lee, Sung-Soo;Cho, Sung-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.701-705
    • /
    • 2002
  • In order to realize full color display, two approaches were used. The first method is the patterning of red, green, and blue emitters using a selective deposition. Another approach is based on a white-emitting diode, from which the three primary colors could be obtained by micro-patterned color filters. White-light-emitting organic light emitting devices (OLEDs) are attracting much attention recently due to potential applications such as backlights in liquid crystal displays (LCDs) or other illumination purposes. In order for the white OLEDs to be used as backlights in LCDs, the light emission should be bright and have Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.33, 0.33). For obtaining white emission from OLEDs, different colors should be mixed with proper balances even though there are a few different methods for mixing colors. In this study, we will report a white organic electroluminescent device based on an incomplete energy transfer. In which the blue and green emission come from the same layer via incomplete energy transfer.

  • PDF

Fabrication of Fine PEDOT:PSS Stripes Using Needle Coating (Needle 코팅을 이용한 미세 PEDOT:PSS 스트라이프 제작)

  • Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.100-104
    • /
    • 2019
  • We have investigated the feasibility of fabricating fine stripes using needle coating for potential applications in solution-processed organic light-emitting diodes (OLEDs). To this end, we have employed an aqueous poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) solution that has been widely used as a hole injection layer (HIL) of OLEDs and performed needle coatings by varying the process parameters such as the coating gap and coating speed. As expected, the stripe width is reduced with increasing coating speed. However, the central thickness of the stripe is rather increased as the coating speed increases, which is different from other coating processes such as slot-die and blade coatings. It is due to the fact that the meniscus formed between the needle tip and the substrate varies depending sensitively on the coating speed. It is also found that the stripe width and thickness are reduced with increasing coating gap. To demonstrate its applicability to OLEDs, we have fabricated a red OLED stripe and obtained light emission with the width of about 90㎛.

Extremely low doping technology in phosphorescent OLEDs

  • Jeon, Woo-Sik;Park, Tae-Jin;Kim, Sun-Young;Pode, Ramchandra;Jang, Jin;Kwon, Jang-Hyuk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1516-1519
    • /
    • 2008
  • We report extremely low doping technology in phosphorescent organic light emitting diodes(PHOLEDs). Highly efficient red PHOLEDs with excellent energy transfer characteristics even under 1 % doping condition have been demonstrated. Results reveal efficient host-dopant system to realize highly efficient PHOLEDs and useful cost saving way by reduction of expensive Ir complex dopants.

  • PDF

Characteristics of Organic Light Emitting diodes with DCM derivatives (DCM-A 유도체를 이용한 유기 광전 변환 소자의 특성)

  • Mun, Soo-San;Lee, An-Sung;Han, Mi-Eun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.168-168
    • /
    • 2010
  • DCM derivatives were newly synthesized. The OLEDs with a DCM-A as an emitting layer was fabricated and analyzed their opto-electrical properties. The structures of OLEDs were I) ITO/DCM-A/Al, II) ITO/-NPD/DCM-A/LiF/Al, and III) ITO/-NPD/DCM-A/Alq3/LiF/Al. The EL peak of the DCM-A shows the red emission in the range of 700 nm. The structure I) shows that 1050 nW/cm2 at 510 mA/cm2. The structure II) shows that takes the most excellent luminance about 39,000 nW/cm2 at 290 mA/cm2. The EL structure ill shows luminance about 13,000 nW/cm2 at 6 mA/cm2.

  • PDF

Emission Characteristics of Red OLEDs in the Emitting Layer Position Doped with DCM2 and Rubrene (DCM2와 Rubrene이 첨가된 발광층 위치에 따른 적색 OLED의 발광 특성)

  • Jung, Haeng-Yun;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.664-668
    • /
    • 2011
  • In this study, we have fabricated the red OLED (organic light emitting diode). The basic device structure is ITO/hole transporting layer, TPD(500 $\AA$)/red emitting layer, Alq3 doped with DCM2:rubrene(20 $\AA$)/electron transporting layer, Alq3(M) (500 $\AA$-M $\AA$)/LiF(15 $\AA$)/Al(1,000 $\AA$). The thickness of electron transporting layer(500 $\AA$-M $\AA$) changed 0, 20, 40, 60 $\AA$. Turn on voltage of the red OLED was 5 V, 6 V, 6.5 V and 7.5 V, respectively with electron transfer layer changed ratio. Luminance of red OLED was 4,504, 1,840, 1,490 and 1,130 cd/$m^2$, respectively. Optimized electron transfer layer position changed ratio of the red OLED was 0 $\AA$.

Effects of 630-nm Organic Light-emitting Diodes on Antioxidant Regulation and Aging-related Gene Expression Compared to Light-emitting Diodes of the Same Wavelength

  • Mo, SangJoon;Kim, Eun Young;Ahn, Jin Chul
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.227-235
    • /
    • 2022
  • To investigate the aging-related physiological functions of organic light-emitting diodes (OLEDs), we examined mRNA expression changes in aging-related genes due to oxidative stress inhibition by 630-nm red light OLEDs. As a result of irradiating 630-nm OLED with an intensity of 5 mW/cm2 for 15 min, the viability of dermal fibroblasts significantly increased by 1.3-fold. In addition, reactive oxygen species generated by H2O2 were significantly reduced about 4.9-fold by irradiation with 630-nm OLED. Quantitative reverse-transcription polymerase chain reaction results showed that 630-nm OLEDs altered aging-related gene mRNA expression levels through antioxidant activity. The mRNA expression levels of matrix metalloproteinase1 (MMP1) and MMP9 decreased significantly, by about 2.2- and 2.5-fold, compared to the control group, whereas those of collagen, type I, and alpha 1 increased significantly, by 4.9-fold. The mRNA expression levels of cancer suppression genes p16 and p53 in dermal fibroblasts were also significantly reduced by 630-nm OLED irradiation, by about 1.4- and three-fold, respectively, compared to the control. Overall, it was confirmed that 630-nm OLED irradiation lowered the level of ROS formation induced by H2O2 in dermal fibroblasts, and that this antioxidant effect could regulate the mRNA expression levels of aging- and tumor suppression-related genes. This study shows a link between 630-nm OLED irradiation and anti-aging physiological functions such as antioxidant function, and suggests the potential of OLEDs as a useful light source for skin care.

Enhancement mechanisms of luminance efficiency in red organic light-emitting devices fabricated utilizing a double electron transport layer consisting of an Al-doped layer and an undoped layer

  • Choo, D.C.;Bang, H.S.;Ahn, S.D.;Lee, K.S.;Seo, S.Y.;Yang, J.S.;Kim, T.W.;Seo, J.H.;Kim, Y.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.513-516
    • /
    • 2008
  • The luminance efficiency of the red organic light-emitting devices fabricated utilizing a double electron transport layer (ETL) consisting of an Al-doped and an undoped layer was investigated. The Al atoms existing in the ETL acted as hole blocking sites, resulting in an increase in the luminance efficiency.

  • PDF

A novel red light-emitting material and the characteristics of OLEDs using the same as red dopant

  • Lim, Seung-Han;Park, Jung-Hyun;Seo, Ji-Hoon;Ryu, Gweon-Young;Kim, Young-Kwan;Shin, Dong-Myung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1573-1576
    • /
    • 2007
  • ABCV-Py, a new red fluorescent material, in which two identical electron donor (dimethylamino group) and acceptor (cyano group) moieties are linked to two independent biphenyl groups which share the same core phenyl, has been synthesized for use in OLED application. Performance of red doped electroluminescent devices using ABCV-Py as dopant were measured with various host materials, $Alq_3$, CBP, DPVBi, and p-terphenyl. The performance of device with DPVBi host material was better than those with other host materials and high doping concentration could be applied on device with ABCV-Py as dopant.

  • PDF

A Study on the Fabrication and Characteristic Analysis of Organic Light Emitting Device using BAlq (BAlq를 적용한 유기발광소자의 제작 및 특성 분석에 관한 연구)

  • 오환술;황수웅;강성종
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.83-88
    • /
    • 2004
  • BAlq was fabricated as for hole blocking layer in the OLED devices to investigate its electrical and optical characteristics. Device structure was ITO/$\alpha$ -NPD/EML/BAlq/Alq3/Al:Li using TYG-201, DPVBi (4, 4 - Bis (2, 2 - diphenylethen-1 - yls) - Biphenyl), Alq and DCJTB (4-(dicyanomethylene)-2- (1-propyls)6-methy 4H-pyrans) as green emitting material, blue emitting material, host material for red emission and red emitting guest material respectively. The OLED device showed optimum working voltage and electron density at 600 cd/$m^2$ when thickness of BAlq is 25$\AA$ for RGB OLED devices while their efficiencies are better at 50$\AA$ of BAlq. Red and blue color OLEDs also fabricated using 30$\AA$ thickness of BAlq and compared with those without BAlq layer. BAlq was more effective in electrical properties such as working voltage, current density and efficiency of red OLED than blue and green ones. This study describes that 30$\AA$ is optimum thickness of BAlq for best performance of full color OLED devices when using BAlq as a hole blocking material.