• Title/Summary/Keyword: recycling technologies

Search Result 254, Processing Time 0.02 seconds

The Commercial Use of Ultrafiltration Membranes in the Resolution of Aqueous Problems

  • Layton, R.B.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.06a
    • /
    • pp.175-181
    • /
    • 1997
  • This paper describes the commercial application of custom ultrafiltration (UF) membranes in the resolution of two aqueous-based problems: the recovery and recycling of laundry wash water and the fmal polishing of sodium hydroxide sterilization solution in the dairy and brewing industries. Both applications are currently in the pilot Stage and employ custom-made UF membranes developed by Liumar Technologies Corporation of Ottawa, Canada.

  • PDF

Current Status on the Domestic Recycling of Magnesium (국내(國內) 마그네슘 리싸이클링 현황(現況))

  • Park, Hyung-Kyu;Kang, Min-Cheol
    • Resources Recycling
    • /
    • v.20 no.3
    • /
    • pp.3-11
    • /
    • 2011
  • Magnesium has been used as parts of vehicles, case materials of notebook PC and mobile phone, and its demand has been increasing recently. So until now, there has little magnesium scraps from the end of life vehicles or electronic parts, and most scraps has been generated from magnesium processing lines such as melting, die casting and machining. It is to review the present status of magnesium recycling. Here, domestic demand of magnesium, recycling amount and technologies used in domestic recycling companies were surveyed in recent years. In 2010, 8,840 tons of magnesium scraps were processed and used as raw materials for die casting products. The recycling ratio was estimated as 32.5%.

Trend on the Recycling Technologies for Spent fluorescent lamps by the Patent and Paper Analysis (특허(特許)와 논문(論文)으로 본 폐 형광램프 재활용(再活用) 기술(技術) 동향(動向))

  • Rhee, Seung-Whee;Park, Hun-Su;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.21 no.4
    • /
    • pp.76-85
    • /
    • 2012
  • Fluorescent lamps generally involve mercury within their lamp bulbs. Thus if the lamps are disposed as they are, it might cause environmental pollution. On the other hand, as the life of the lamps depends on the degradation of the discharge performance, the fluorescent substance composing the fluorescent substance coating can be recycled by reusing them as the recycled fluorescent substance. Also, the glass material composing the glass bulbs can be reused. The range of search was limited in the open patents of USA (US), European Union (EU), Japan (JP), Korea (KR) and SCI journals from 1977 to 2011. Patents and journals were collected using key-words searching and filtered by filtering criteria. The trends of the patents and journals was analyzed by the years, countries, companies, and technologies. Recovery method of metals from spent fluorescent lamps is mainly the focus on the recovery of precious metals using acid treatment and, detoxification technology is related with controlling process of mercury using a filter system.

Lithium ion car batteries: Present analysis and future predictions

  • Arambarri, James;Hayden, James;Elkurdy, Mostafa;Meyers, Bryan;Abu Hamatteh, Ziad Salem;Abbassi, Bassim;Omar, Waid
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.699-710
    • /
    • 2019
  • Electric vehicles (EVs) are spreading rapidly and many counties are promoting hybrid and fully EVs through legislation. Therefore, an increasing amount of lithium ion batteries will reach the end of their usable life and will require effective and sustainable end-of-life management plan which include landfill disposal or incineration. The current research focuses on more sustainable methods such as remanufacturing, reuse and recycling in order to prepare for future battery compositions and provide insights to the need recycling methods to be developed to handle large amounts of batteries sustainably in the near future. The two most prominent material recovery techniques are hydrometallurgy and pyrometallurgy which are explored and assessed on their relative effectiveness, sustainability, and feasibility. Hydrometallurgy is a superior recycling method due to high material recovery and purity, very low emissions, high prevalence of chemical reuse and implementation of environmentally sustainable compounds. Expanding recycling technologies globally should take the research and technologies pioneered by Umicore to establish a sustainable recycling program for end-of-life EVs batteries. Emerging battery technology of Telsa show the most effective designs for high performance batteries includes the use of silicon which is expected to increase capacity of batteries in the future.

Current Status of Recycling of LED Waste (LED 폐자원의 재활용 현황)

  • Lee, Duk-Hee;Shin, Dongyoon;Kim, Tae-Hyung;Lee, Chan-Gi;Park, Kyung-Soo;Lee, Ki Woong;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.28 no.2
    • /
    • pp.14-22
    • /
    • 2019
  • Development of technology makes LED an economical option because of lower energy consumption and better environmental impact. Because higher consumer demand the LED market is expanding rapidly due to its environment-friendly advantages. Expansion of LED application, development of various fusion technologies, the emergence of new markets, and the large-scale expansion of markets would lead to a large volume of e-waste generation with valorization potential. Currently, most of the generated waste being that landfilled and incinerated due to the absence of technology and management system. In this paper, we review the current status of LED waste recycling and analyzes the available recycling technologies.

Methods of Separating Used Plastics for Recycling (폐플라스틱의 선별기술)

  • 윤여환
    • Resources Recycling
    • /
    • v.6 no.2
    • /
    • pp.12-21
    • /
    • 1997
  • Plastics waste constitutes approximately 23% by volume of the municipal solid waste(MSW) generated in the U.S. each year, and have slow rate of degradation in the environment. Therefore, there is a great deal of public pressure to recycle plastics, and more than 100 million people participate in the curbside recycling programs. Despite the high level of public interest, only 3.5% of the plastic are recycled, which is substantially lower than the recycle rates of other materials such as paper fibers, glass, and iron. Although a large part of the reason is due to the low price of virgin polymers, which in turn is due to the low price of oil, it is possible to make the plastics recycling as a profitable business by developing advanced technologies. In this communication, various methods of separating pplastics from metals and from each other are discussed.

  • PDF

A Study on Re-calculation of Recycling Standard Cost through the Analysis on Standard Cost (표준원가 분석을 통한 재활용 기준비용 재산정에 관한 연구)

  • Lee, Hee-Nahm;Choi, Yoon-Jeong
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.1
    • /
    • pp.189-193
    • /
    • 2011
  • The current standard cost for recycling applied under the Extended Producer Responsibility(EPR) institution, is not coping with continuously increased number of obligatory subject items as well as a variety of variable cost changing factors regarding the recycling treatment cost caused by price fluctuation such as increased material and labor cost entirely across the society; changes in recycling treatment process following the developing technologies; and changes in the required work forces and equipments followed by the trends of automated facilities. Despite such various cost fluctuation factors, the current EPR is not coping with the trends, making the re-calculation process difficult, which causes differences between the real treatment cost for recycling. In this study, the analysis was made on main factors affecting on the related cost and the related price changing index was calculated, by conducting the influence evaluation on the standard cost factors of the current standard cost for recycling. Through theses results, more objective standard will be set for the re-calculation of standard cost for recycling to greatly contribute to setting up the midterm and long-term strategies in the future towards efficient institution.

Lithium - A Critical Metal for Clean Energy Technologies: A Comprehensive Review on Challenges and Opportunities for Securing Lithium from Primary and Secondary Resources (리튬-청정 에너지 기술의 핵심금속: 1차 및 2차 자원으로부터 리튬 확보를 위한 도전과 기회에 대한 종합적 고찰)

  • Swain, Basudev;Kim, Min-seuk;Lee, Chan-Gi;Chung, Kyeong Woo;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.3-18
    • /
    • 2019
  • Due to the increasing demand for clean energy, the consumption of lithium ion batteries (LIBs) is expected to grow steadily. Therefore, stable supply of lithium is becoming an important issue globally. Commercially, most of lithium is produced from the brine and minerals viz., spodumene, although various processes/technologies have been developed to recover lithium from other resources such as low grade ores, clays, seawaters and waste lithium ion batteries. In particular, commercialization of such recycling technologies for end-of-life LIBs being generated from various sources including mobile phones and electric vehicles(EVs), has a great potential. This review presents the commercial processes and also the emerging technologies for exploiting minerals and brines, besides that of newly developed lithium-recovery-processes for the waste LIBs. In addition, the future lithium-supply is discussed from the technical point of view. Amongst the emerging processes being developed for lithium recovery from low-grade ores, focus is mostly on the pyro-cum-hydrometallurgical based approaches, though only a few of such approaches have matured. Because of low recycling rate (<1%) of lithium globally compared to the consumption of lithium ion batteries (56% of lithium produced currently), processing of secondary resources could be foresighted as the grand opportunity. Considering the carbon economy, environment, and energy concerns, the hydrometallurgical process may potentially resolve the issue.

Feasibility Study on Technology Status Level and Location Conditions of Urban Mining Industry in Abandoned Mine Area (도시광산 산업의 현황수준 및 폐광지역 입지여건 타당성 연구)

  • Ko, Ilwon;Park, Joo-Hyun;Park, Jae-Hyun;Yang, In-Jae;Lee, Seung-Ae;Kim, Dae-Yeop;Kim, Su-Ro
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.553-563
    • /
    • 2018
  • In this study, the location conditions and optimal technologies required for creating urban municipalities that can utilize the space in an abandoned mine area, where there is no infrastructure related to recycling wastes and valuable metals, are investigated. The urban mining industry deals with mineral resources through the processing of high value-added industrial by-products and wastes, and it is a useful linkage industry for the development of mineral resources and prevention of mining hazards. Urban mining technologies targeted at the abandoned mine area constitute screening, extraction, and smelting for recycling waste products. By analyzing the technologies available, an industrial network can be developed for recycling waste batteries and catalysts, which are promising raw materials. It is also important to establish an appropriate location for related industries that can generate value-added resources, rather than the resource supply and demand conditions seen in general urban mines. In order to overcome the accessibility and infrastructure limitations, the economic foundation of the abandoned mine area should consider the linkage of raw material supply, key technologies for recycling useful mineral resources that are derived from urban mines, spatial and site conditions, and industrial characteristics.

Worker Safety in the Rare Earth Elements Recycling Process From the Review of Toxicity and Issues

  • Shin, Seo-Ho;Kim, Hyun-Ock;Rim, Kyung-Taek
    • Safety and Health at Work
    • /
    • v.10 no.4
    • /
    • pp.409-419
    • /
    • 2019
  • Although the rare earth elements (REEs) recycling industry is expected to increase worldwide in hightech industry, regulations for worker safety have yet to be established. This study was conducted to understand the potential hazard/risk of REE recycling and to support the establishment of regulations or standards. We review the extensive literature on the toxicology, occupational safety, and health issues, and epidemiological surveys related to the REEs, and propose suitable management measures. REE recycling has four key steps such as collection, dismantling, separation, and processing. In these processes, hazardous substances, such as REEs-containing dust, metals, and chemicals, were used or occurred, including the risk of ignition and explosion, and the workers can be easily exposed to them. In addition, skin irritation and toxicities for respiratory, nervous, and cardiovascular systems with the liver toxicity were reported; however, more supplementary data are needed, owing to incompleteness. Therefore, monitoring systems concerning health, environmental impacts, and safety need to be established, based on additional research studies. It is also necessary to develop innovative and environment-friendly recycling technologies, analytical methods, and biomarkers with government support. Through these efforts, the occupational safety and health status will be improved, along with the establishment of advanced REE recycling industry.