• 제목/요약/키워드: recycled materials

검색결과 902건 처리시간 0.03초

Molding Properties and Causes of Deterioration of Recycled MIM Feedstock

  • Cheng, Li-Hui;Hwang, Kuen-Shyang
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.215-216
    • /
    • 2006
  • To lower the cost of MIM products, the gate and runner materials and green parts with defects are usually recycled. It is necessary to understand what causes the recycled products to deteriorate. The results show that the viscosity of the 1R (recycled once) feedstock was slightly lower than that of the fresh material. However, as the number of recyclings increased, the viscosity increased, while the density decreased, and more defects were noticed duri ng solvent debinding. These deteriorations were mainly caused by the increase of the melting point of the backbone binder and the oxidation of the filler or paraffin wax.

  • PDF

재활용 범퍼의 효율적인 적용을 위한 신재의 최적 배합비율에 관한 연구 (Study on a recipe of recycled bumper and pristine materials for application of vehicle parts)

  • 손영곤
    • 한국산학기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.175-180
    • /
    • 2016
  • 폐 자동차에서 떼어낸 범퍼는 분쇄 및 도장 (paint)제거 공정을 거친 후 신재 (pristine materials)와 일정 비율 혼합하여 자동차 부품을 제조하는 공정에서 재활용된다. 본 연구에서는 신재와 도장이 제거된 범퍼 분쇄품을 일정 비율 혼합하여 혼합비에 따른 기계적인 물성 및 화학적인 성질을 연구하였다. 신재에 범퍼 분쇄 품을 혼합하였을 때 인장강도 및 굴곡탄성율과 같은 강성은 두 물질의 조성 평균으로 나타났지만, 충격강도와 파단 신율과 같은 인성 (toughness)은 조성 평균보다 낮은 negative deviation을 보였다. 이는 두 물질간의 혼화성이 부족하여 발생하는 결과라는 것을 FT-IR 분석을 통하여 알 수 있었다. 범퍼 분쇄품의 혼합 비율이 30% 이상에서 두 물성이 급격히 저하되었다. 이를 활용하면 최적의 배합 비율을 선정할 수 있을 것이다. 또한 이전 연구에서 밝힌 바와 같이 도장 제거율을 80 % 수준까지는 달성하기는 쉽지만 나머지 20%를 제거하기 위하여 많은 노력과 에너지가 소요되는 바, 도장이 제거되지 않은 분쇄품과 도장이 제거된 분쇄품의 혼합 비율에 따른 기계적인 물성에 대하여 실험하였다. 도장이 제거되지 않은 범퍼 분쇄품이 소량만 첨가되어도 기계적인 물성은 급격히 저하가 되어 폐 범퍼를 재활용하기 위해서는 도장 제거 공정이 매우 중요하다는 사실을 알 수 있었다.

도로포장 재료로서 폐콘크리트 재생골재의 활용성 연구 (Assesment of Applicability of Recycled Aggregates for Highway Pavement Materials)

  • 김광우;류능환;도영수;이상범
    • 한국도로학회논문집
    • /
    • 제3권2호
    • /
    • pp.103-112
    • /
    • 2001
  • 본 연구는 재생골재를 도로의 보조기층재료 및 포장용 콘크리트 골재로 사용하기 위하여 수행되었다. 우선 보조기층재료로서의 활용성 여부를 파악하기 위하여 실내다짐시험, CBR 시험, 평판재하시험을 수행하였으며, 콘크리트용 골재로의 활용성을 보기 위하여 재생골재 첨가비율을 0, 20, 40, 60, 80%로 하여 설계기준강도 $280kgf/cm^2$인 표층용 콘크리트를 제조하였다. 제조된 콘크리트로 굳지 않은 콘크리트 성질과 28일 양생 후 강도시험과 동결 융해에 따른 내구성 시험을 통해 폐콘크리트 재생골재의 활용성을 도로포장재료 측면에서 검토하였다. 실험결과 재생골재는 보조기층재료로서의 사용이 충분히 가능하며 표층용 콘크리트 골재로서 재생골재 첨가비율 40%까지 활용이 가능함을 알 수 있었다.

  • PDF

A review on pavement porous concrete using recycled waste materials

  • Toghroli, Ali;Shariati, Mahdi;Sajedi, Fathollah;Ibrahim, Zainah;Koting, Suhana;Mohamad, Edy Tonnizam;Khorami, Majid
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.433-440
    • /
    • 2018
  • Pavements porous concrete is a noble structure design in the urban management development generally enabling water to be permeated within its structure. It has also capable in the same time to cater dynamic loading. During the technology development, the quality and quantity of waste materials have led to a waste disposal crisis. Using recycled materials (secondary) instead of virgin ones (primary) have reduced landfill pressure and extraction demanding. This study has reviewed the waste materials (Recycled crushed glass (RCG), Steel slag, Steel fiber, Tires, Plastics, Recycled asphalt) used in the pavement porous concretes and report their respective mechanical, durability and permeability functions. Waste material usage in the partial cement replacement will cause the concrete production cost to be reduced; also, the concretes' mechanical features have slightly affected to eliminate the disposal waste materials defects and to use cement in Portland cement (PC) production. While the cement has been replaced by different industrial wastes, the compressive strength, flexural strength, split tensile strength and different PC permeability mixes have depended on the waste materials' type applied in PC production.

순환골재를 이용한 보투수성 알칼리 결합재 블록의 성능평가 (Evaluation of Absorbent-Pervious Alkali-Activated Block Using Recycled Aggregate)

  • 박광민;김형석;조영근
    • 한국건설순환자원학회논문집
    • /
    • 제5권2호
    • /
    • pp.160-167
    • /
    • 2017
  • 본 연구에서는 알칼리 활성화 결합재 및 순환골재를 동시에 활용한 100% 순환자원 보투수성 알칼리 결합재 블록의 개발 가능성을 확인하고자 한다. 또한, 공극률, 압축강도, 투수계수, 보수량, 흡수율 및 증발성 등의 특성 시험 방법을 정립하여 표준화의 기초단계를 확보하였다. 그 결과, 순환골재를 이용한 알칼리 활성화 결합재 블록은 액상 규산나트륨 및 초기고온양생을 통해 24MPa급의 보투수성 블록을 제조할 수 있었다. 또한 순환골재를 적용한 경우 천연골재보다 보투수 블록의 보수량, 흡수율 및 상대흡수율에서 효과적인 결과가 나타났다. 종합적으로, 알칼리 활성화 결합재를 기반으로 순환골재 및 액상폴리머를 사용할 경우 보수량, 흡수율 및 상대흡수율 증진이 가능하고 일반 콘크리트 인터로킹 블록과 비교해 약 10% 수준의 표면온도 저감효과를 가진 보투수성 블록의 제조를 기대할 수 있다.

재활용 도로재료의 회복탄성계수 산정을 위한 적용 모델의 평가 (Evaluation of Resilient Modulus Models for Recycled Materials)

  • 손영환
    • 한국농공학회논문집
    • /
    • 제52권2호
    • /
    • pp.51-57
    • /
    • 2010
  • Many models have been used to represent the effects of confining stress, bulk stress, and shear stress on the value of the resilient modulus (Mr). This study was conducted to estimate Mr of the recycled materials such as recycled concrete aggregate (RCA) and recycled asphalt pavement (RAP) through the repeated load cyclic test. Also, two models were applied to estimation of Mr for comparing between measured Mr values and predicted Mr values. The first model (A-model) can provide a quick and easy estimation of the Mr based on the bulk stress, while the second model (N-model) includes not only the bulk stress but also the shear stress. Statistical analysis indicated that all results using the both of models are significant at a 95 % confidence level. Therefore, the both of models could be used as an effective prediction model of Mr for RCA and RAP. Especially, the Model 2 including the parameters of the bulk stress and the shear stress could give more reliable estimation at the high range of Mr values.

재생골재 콘크리트의 성능 예측에 관한 기초적 연구 (A Fundamental Study on the Performance Predition of Recycled Aggregate Concrete)

  • 최맹기;박희곤;박선길;이재삼;이영도;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 춘계학술논문 발표대회 제6권1호
    • /
    • pp.93-96
    • /
    • 2006
  • As the importance of recycled materials is being emphasized more in the Korean construction market, the production quality has been improved to a significantly high level. Compared to the high quality, however, there are used very limitedly. Among recycled construction materials, recycled aggregates produced through the retreatment of waste concrete are drawing attention because of lack of natural aggregate and heightened consciousness of resource saving and environmental protection and, as a consequence, they are close to natural aggregates in terms of production technology and quality. Despite the high quality and productivity, however, the utilization of recycled aggregates is very low.

  • PDF

Properties of recycled green building materials applied in lightweight aggregate concrete

  • Wang, Her-Yung;Hsiao, Darn-Horng;Wang, Shi-Yang
    • Computers and Concrete
    • /
    • 제10권2호
    • /
    • pp.95-104
    • /
    • 2012
  • This study uses recycled green building materials based on a Taiwan-made recycled mineral admixture (including fly ash, slag, glass sand and rubber powder) as replacements for fine aggregates in concrete and tests the properties of the resulting mixtures. Fine aggregate contents of 5% and 10% were replaced by waste LCD glass sand and waste tire rubber powder, respectively. According to ACI concrete-mixture design, the above materials were mixed into lightweight aggregate concrete at a constant water-to-binder ratio (W/B = 0.4). Hardening (mechanical), non-destructive and durability tests were then performed at curing ages of 7, 28, 56 and 91 days and the engineering properties were studied. The results of these experiments showed that, although they vary with the type of recycling green building material added, the slumps of these admixtures meet design requirements. Lightweight aggregate yields better hardened properties than normal-weight concrete, indicating that green building materials can be successfully applied in lightweight aggregate concrete, enabling an increase in the use of green building materials, the improved utilization of waste resources, and environmental protection. In addition to representing an important part of a "sustainable cycle of development", green building materials represent a beneficial reutilization of waste resources.

Rheological, physico-mechanical and durability properties of multi-recycled concrete

  • Rahmani, Abdessamed Azzaz;Chemrouk, Mohamed;Ammar-Boudjelal, Amina
    • Advances in concrete construction
    • /
    • 제9권1호
    • /
    • pp.9-22
    • /
    • 2020
  • The present work looks at the possibilities of recycling more than once demolished concrete as coarse aggregates, to produce new concrete. Different concrete mixes were made with substitutions of 50%, 75% and 100% of recycled concrete aggregates respectively as coarse aggregates. The physico-mechanical characterization tests carried out on the recycled concrete aggregates revealed that they are suitable for use in obtaining a structural concrete. The resulting concrete materials had rheological parameters, compressive strengths and tensile strengths very slightly lower than those of the original concrete even when 100% of two cycles recycled concrete aggregates were used. The durability of the recycled aggregates concrete was assessed through water permeability, water absorption and chemical attacks. The obtained concretes were thought fit for use as structural materials. A linear regression was developed between the strength of the material and the number of cycles of concrete recycling to anticipate the strength of the recycled aggregates concrete. From the results, it appear clear that recycling demolished concrete represents a valuable resource for aggregates supply to the concrete industry and a the same time plays a key role in meeting the challenge for a sustainable development.

Effects of Nanoclay and Glass Fiber on the Microstructural, Mechanical, Thermal, and Water Absorption Properties of Recycled WPCs

  • Seo, Young-Rok;Kim, Birm-June;Lee, Sun-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권4호
    • /
    • pp.472-485
    • /
    • 2019
  • When wood plastic composites (WPCs) have been used for a certain period of time, they become waste materials and should be recycled to reduce their environmental impact. Waste WPCs can be transformed into reinforced composites, in which fillers are used to improve their performance. In this study, recycled WPCs were prepared using different proportions of waste WPCs, nanoclay, and glass fiber. The effects of nanoclay and glass fiber on the microstructural, mechanical, thermal, and water absorption properties of the recycled WPCs were investigated. X-ray diffraction showed that the nanoclay intercalates in the WPCs. Additionally, scanning electron micrographs revealed that the glass fiber is adequately dispersed. According to the analysis of mechanical properties, the simultaneous incorporation of nanoclay and glass fiber improved both tensile and flexural strengths. However, as the amount of fillers increases, their dispersion becomes limited and the tensile and flexural modulus were not further improved. The synergistic effect of nanoclay and glass fiber in recycled WPCs enhanced the thermal stability and crystallinity ($X_c$). Also, the presence of nanoclay improved the water absorption properties. The results suggested that recycled WPCs reinforced with nanoclay and glass fiber improved the deteriorated performance, showing the potential of recycled waste WPCs.