• Title/Summary/Keyword: recycled material

Search Result 762, Processing Time 0.026 seconds

Experimental study on chemical activation of recycled powder as a cementitious material in mine paste backfilling

  • Liu, Yin;Lu, Chang;Zhang, Haoqiang;Li, Jinping
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.341-349
    • /
    • 2016
  • To improve the utilization rate of construction waste as mine backfilling materials, this paper investigated the feasibility of using recycled powder as mine paste backfilling cementitious material, and studied the pozzolanic activity of recycled construction waste powder. In this study, alkali-calcium-sulfur served as the activation principle and an orthogonal test plan was performed to analyze the impact of the early strength agent, quick lime, and gypsum on the pozzolanic activity of the recycled powder. Our results indicated that in descending order, early strength agent > quick lime > gypsum affected the strength of the backfilling paste with recycled powder as a cementitious material during early phases. The strength during late phases was affected by, in descending order, quick lime > gypsum > early strength agent. Using setting time and early compressive strength as an analysis index as well as an extreme difference analysis, it was found that the optimal ratio of recycled powder cementitious material for mine paste backfilling was recycled powder:quick lime:gypsum:early strength agent at 78%:10%:8%:4%. X-ray diffraction analysis and scanning electron microscope were used to show that the hydration products of recycled powder cementitious material at the initial stages were mainly CH and ettringite. As hydration time increased, more and more recycled powder was activated. It mainly became calcium silicate hydrate, calcium aluminate hydrate, etc. In summary, recycled powder exhibited potential pozzolanic activities. When activated, it could replace cementitious materials to be used in mine backfill.

A Study on the Base Material Specific and Processing Methods of Recycled New Materials in Space (실내공간에 사용되는 재활용 신재료의 소재 및 가공방법 연구)

  • Seo, Ji-Eun;Jeong, Hee-Jeong
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.3
    • /
    • pp.22-30
    • /
    • 2012
  • Nowadays the issue of environmental pollution and ecological destruction is not a simple issue but an important issue to be continuously considered. It is deemed that a study for recycled new materials is immediately required and this study is to analyze features and processing methods of new materials which can be used to interior space. We found the recycled new materials used for space through researching various web sits. And then we analyzed what the base materials are and classified that base materials are whether natural or artificial of the recycled materials. We classified processing methods of the recycled new materials after researching general processing methods. The result of this study would be an important material to the research and development of new finishing materials with consideration of environment and to the research for a guideline of applicable new materials. The results of this study are as follows : First, we could classify widely 2 categories into natural material and artificial material and then 10 subcategories into metal, glass, wood, rubber, stone, plastic, leather or fabric, ceramic, concrete and so on, and analyzed that which material is mostly used and whether it is single material or multiple material. In order to analyze the feature of processing method. Second, we could classify into 4 categories such as junction, surface process, molding, and insert, and found out which processing method is applied based on objects of research. Third, as an analysis result of the recycled new material feature, in order to develop various new materials, it is required to study on combination and application of 2 materials or more rather than single material. Four, as a analysis result of the processing method feature, I would like to suggest that development and application of various processing methods are required. Especially, it is necessary to grope for a way to develop new functional materials for interior space through a systemic research and analysis of processing method of other fields. Furthermore, a way to reuse recycled new materials should be considered in a stage of selection and application of processing method.

  • PDF

Characteristic of Resilient Modulus and Unconfined Compressive Strength for Recycled Materials blend with Cement Kiln Dust (CKD 혼합에 따른 Recycled Material의 회복탄성계수와 일축압축강도 특성)

  • Son, Young-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.2
    • /
    • pp.19-25
    • /
    • 2010
  • This study was conducted to determine the resilient modulus (Mr) and the unconfined compressive strength (UCS) of two recycled roadway materials such as recycled pavement material (RPM) and road surface gravel (RSG) with or without cement kiln dust (CKD). The recycled materials were blended with two CKD contents (5, 10 %) and 28 day curing time. Mr and UCS tests were also conducted after 10cycles of freezing and thawing to asses the impact of freeze-thaw cycling. Mr was determined conducting by the laboratory test method described by NCHRP 1-28A. Stabilized RPM and RSG had a modulus and a strength higher than unstabilized RPM and RSG. Mr and UCS of RPM and RSG mixed with CKD increased with increasing CKD content. The results indicated that the addition of CKD could be improved the strength and the stiffness of RPM and RSG. Therefore, RPM, RSG and CKD could be used as an effective materials in the reconstruction of roads.

Strength Characteristics of Unsaturated Polyester Resin Mortar using Recycled Fine Aggregates

  • Kim, Wha-Jung;Choi, Young-Jun;Jun, Joo-Ho;Kim, Yong-Bae
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.89-97
    • /
    • 1999
  • The purpose of this research is to investigate the utilization of recycled fine aggregates as a material to apply to a building finished walls or as a decorating material in combination with a polymer. The strengths of two resin mortars using recycled fine aggregates and natural fine aggregates was made. In order to improve the workability and the strength of the resin mortar with recycled fine aggregates, partial replacement of recycled fine aggregates with natural ones was made with the application of various type of fillers. The results, it show that the compressive strength and flexural strength of resin mortar using the recycled fine aggregates were about 70% to 100% of those of resin mortar using natural fine aggregates. It was enough to assure the utilization of the recycled fine aggregates as a material for the production of resin mortar. From the result of partial replacement of recycled fine aggregates with natural ones, the compressive strength was Increased from 5% to 15% and the flexural strength was much as 5% to 20% as a result of 70% substitution It was also found that the use of garnet powder shows a similar tendency in the compressive strength and slag powder does in the flexural strength and tensile strength.

  • PDF

A Experimental Study on the Construction Material Using the Circulation Resources (폐콘크리트 순환자원을 이용한 건설재료의 특성연구)

  • Hong, Se-Hwa;Son, Ki-Sang;Choi, Jea-Nam
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.41-46
    • /
    • 2010
  • This is to show some basic data for introducing both circulated aggregate and recycled powder producing waste concrete. Standard-mixing design for 24MPa has been basically used and added and replaced normal aggregate with recycled powder made of waste concrete. In addition, polycarboxylate high-range water reducing agent has been used because recycled powder is missing adhesive strength and it is not compare with cement's adhesive strength. Compressive strength with powder mixture of 2%, 4%, 6%, 8%, and 10% has been decreased down to 80% of normal concrete material strength without recycled powder mixture. This result has same decreasing proportion to tensile strength of the material. Resistant capacity change of beam varying with recycled powder mixture has been decreased down to 60% of normal concrete bean capacity, while there are 80% decrease of material strength. But strength and capacity change has same consistent decrease ratio. It is found that recycled powder with approximately 15% unit concrete volume can be replaced with cement in reasonable admixture mixing condition.

Laboratory Experiment to Characterize Thermal Properties of Recycled-Aggregate Backfill (실내시험을 통한 송배전관로 뒤채움재용 순환골재의 열적 특성 평가)

  • Wi, Ji-Hae;Hong, Sung-Yun;Lee, Dae-Soo;Han, Eun-Seon;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1231-1238
    • /
    • 2010
  • Recently, the utilization of recycled aggregates for backfilling a power transmission pipeline trench has been increasing due to the issues of eco-friendly construction and shortage of natural aggregate resource. It is important to investigate the physical and thermal properties of the recycled aggregates that can be used as a backfill material. This study presents the thermal properties of two types of recycled aggregates with various particle size distributions. The thermal properties of the recycled aggregate were measured using the transient hot wire method and the probe method after performing the standard compaction test using an automatic compactor. Similar to silica sand, the thermal resistivity of the recycled aggregates decreased when the water content increased. This study shows that the recycled aggregate can be a promising backfill material substituting for natural aggregate when backfilling the power transmission pipeline trench.

  • PDF

Utilization of Recycled Aggregates and Crushed Stone as Vertical drains (연직배수재로서 순환골재와 쇄석의 활용방안)

  • Lee, Dal-Won;Lee, Jung-Jun;Kim, Si-Jung;Lee, Young-Hak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.969-978
    • /
    • 2010
  • In this study, a laboratory model test on utilization of recycled aggregates and crushed stone as vertical drains to use alternative material of sand in soft ground is performed. The vertical and horizontal coefficient of permeability of the recycled aggregates and crushed stone showed largely 1.2~4.0 times and 3.0~3.3 times greater than sand, respectively. Therefore, it showed enough to be an alternative material to the sand which had been being used as the vertical and horizontal drainage material before. The variations of pore water pressure with time showed constantly regardless of the load in all vertical drainage materials. When water level drops suddenly, the pore water pressure of the recycled aggregate and crushed aggregate is reduced to nearly zero. Therefore, it was applicable to the field because discharge capacity was similarity to that of sand. The settlement in crushed aggregates and recycled aggregate decreases gradually with the load increase. When water level drops suddenly, earth pressure in all drains materials was evaluated the equivalent drainage capacity similarity to sand because it show approaching the nearly zero.

  • PDF

Improvement of Soft Ground by Using Recycled Aggregates (재생골재를 이용한 연약지반개량)

  • Lee, Dal-Won;Lee, Jung-Jun;Kim, Si-Jung
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.1
    • /
    • pp.97-104
    • /
    • 2010
  • In this study, a laboratory model test on utilization of recycled aggregates and crushed stone as vertical drains to use alternative material of sand in soft ground is performed. The vertical and horizontal coefficient of permeability of the recycled aggregates and crushed stone showed largely 1.2~4.0 times and 3.0~3.3 times greater than sand, respectively. Therefore, it showed enough to be an alternative material to the sand which had been being used as the vertical and horizontal drainage material before. The variations of pore water pressure with time showed constantly regardless of the load in all vertical drainage materials. When water level drops suddenly, the pore water pressure of the recycled aggregate and crushed aggregate is reduced to nearly zero. Therefore, it was applicable to the field because discharge capacity was similarity to that of sand. The settlement in crushed aggregates and recycled aggregate decreases gradually with the load increase. When water level drops suddenly, earth pressure in all drains materials was evaluated the equivalent drainage capacity similarity to sand because it show approaching the nearly zero.

Study on tensile performance change by recycled materials of TPO sheet applied to rooftop and artificial ground Rootproofings (옥상 및 인공지반 방근공사에 적용되는 TPO시트의 재생 소재 적용에 따른 인장성능 변화 연구)

  • Kim, Sun-Do;Kim, Jin-Sung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.103-104
    • /
    • 2018
  • Recently, in addition to greening of roof and artificial soil, Rootproofing to prevent damage to the waterproof layer and structures by roots is recognized as an important task. Therefore, various related products and construction methods have been developed and applied in the field. However, in the case of synthetic polymer-based sheets most commonly used in domestic construction sites, Most are produced using 100% new materials that are not suitable for green trends such as resource conservation and environmental protection. Therefore, in this study, we developed TPO sheet using recycled material, which is a technology that can secure eco-friendliness by utilizing recycled resources. As a result of the evaluation of tensile performance of the TPO sheet according to the recycled material content, The tensile strength of the specimens with the recycled content of 50 ~ 70% was the highest, The elongation rate of the specimen with the recycled content of 30 ~ 40% was the best.

  • PDF

Possibility for the Replacement of Recycled Plastic Products on Timber Ginseng Cultivation Facilities (목재 인삼재배시설에 대한 재생플라스틱의 대체 가능성 평가)

  • Song, Hosung;Lim, Seong-Yoon;Kim, Yu-Yong;Yu, Seok-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.4
    • /
    • pp.45-52
    • /
    • 2023
  • This study was conducted to examine the possibility of use as a structural material for ginseng cultivation facilities of recycled plastics. In order to determine the possibility that recycled plastic can replace timber used as a structural material for ginseng cultivation facilities, the specimens collected by elapsed time were compared with timber through bending tests. In addition, in order to analyze the effect of external environmental conditions on recycled plastic products, bending test was conducted with the specimens that had completed weathering test and accelerated heat aging test respectively. As a result, the bending strength of recycled plastic specimens with the elapsed time of 360 days was lower than that of timber. But bending strength of recycled plastic specimens exceeded the design allowable stress standard set by the Korea design standard (MOLIT, 2016). There was no degradation in quality of recycled plastic due to the external environment, and it was found that there would be no problem even if it was used as a structural material for ginseng cultivation facilities.