• Title/Summary/Keyword: recycled fine aggregates

Search Result 153, Processing Time 0.022 seconds

An Experimental Study on the Freeze-Thaw Resistance of Concrete Containing Waste Glass (폐유리를 혼입한 콘크리트의 동결융해 저항성에 관한 실험적 연구)

  • Park, Seung-Bum;Cheong, Myeong-Il;Lee, Bong-Chun;Lee, Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.593-598
    • /
    • 2002
  • Recently, as industrialization is rapidly growing and the standard of life is rising, the quantities of waste glasses have been hastily increased and most of them are not recycled but abandoned. It causes some problems such as the waste of natural resources and environmental pollution. Therefore, in this study freeze-thaw resistance test was conducted to analyze the properties of concrete containing waste glasses as fine aggregates and containing industrial by-products (fly ashes, silica fumes). As a results, it was found that freeze-thaw resistance decreases as the content of waste glasses increases. Also, the content of fly ash doesn't affect to the freeze-thaw resistance, and freeze-thaw resistance decreases with tile increase of silica fume contents.

  • PDF

Evaluation of the Fundamental Properties of Zero-Cement Mortar Using Blast Furnace Slag From Different Areas (산지 별 고로슬래그 미분말 변화에 따른 무시멘트 순환잔골재 모르타르의 기초적 특성 평가)

  • Zhao, Yang;Lee, Hong-Kyu;Kang, Byoung-Hoi;Jo, Man-Ki;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.210-211
    • /
    • 2014
  • Nowadays, as to reduce the emission volume of CO2, blast furnace slag has been widely used to replacement of cement. Techniques about using industrial by-products has been extensively studied. For the previous study, blast furnace slag has been used with recycled fine aggregates. In thess study, considering about the different properties of blast furnace slag, as the change of blaine and chemical performances of blast furnace slag, the results of flowability and compressive strength has been analysed.

  • PDF

Recycling of Chilled Converter Slag as Aggregate in Cement Mortar (급랭 진로슬래그 모르타르 골재 재활용 특성)

  • Kim, Tae Heui;Park, Kyung Bong
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.238-243
    • /
    • 2006
  • The aggregate properties of chilled converter slag reformed by atomizing liquid converter slag were investigated. The properties of mortars with various replacement of standard sand by chilled converter slag as recycled fine aggregates were investigated. The particle shape of chilled converter slag by atomizing was a sphere with an open cavity which is enclosed with two layers like a bored coconut. Specific gravity, unit weight and fineness modulus increased with increasing the replacement, and solid content had the maximum at the replacement of 75% and water absorption rate had the minimum at the replacement. The hardened mortars with higher replacements have the higher specific gravity and the denser texture.

  • PDF

Manufacturing Techniques of Tile in Anchang-ri Historical Site of Wonju-city, Korea (안창리 기와의 제작기법)

  • Yang, Dong-Yoon;Kim, Ju-Yong;Shin, Suk-Jeong;Park, Jun-Beom
    • The Korean Journal of Quaternary Research
    • /
    • v.23 no.2
    • /
    • pp.13-33
    • /
    • 2009
  • Mineralogical analysis with petrographic microscope and XRD was carried out to verify manufacturing technique of the tiles(9 samples) and kiln wall materials(5 samples) from the Anchang-ri history site in Wonju county. One of the results we found is such that during the tile manufacturing process fine tile fragments or wall materials might be added instead of chamottes to maintain tile pattern. Abandoned tiles or wall materials were recycled repeatedly, which may be supported by the recycled chamottes that made from iron-rich fine aggregates or disposed kiln wall materials in many samples analyzed. The tiles and wall materials are divided into 3 types, including low temperature type (below $800^{\circ}C$), intermediate temperature type ($800-930^{\circ}C$) and high temperature type ($930-1470^{\circ}C$) as a function of firing temperature which deduced by mineral assemblages identified under petrographic microscope and by XRD composition. Both Kiln A8 of Choseon Dynasty and wall material AW5 were burned at the highest temperature among the all analyzed samples.

  • PDF

Effect on Ferronickel Slag Powder in ASR (페로니켈 슬래그 미분말이 ASR에 미치는 영향)

  • Kim, Min-Seok;Seo, Woo-Ram;Rhee, Suk-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • Most of the existing research on ferronickel slag has focused on its potential as aggregate and fine aggregate, this study was conducted focusing on the potential of ferronickel slag powder as a concrete admixture. For concrete, which fly ash, blast furnace slag, and FSP were mixed with each 10 % type the reactivity was evaluated by applying ASTM C 1260 of the United States. As a result, compared with the control group, the expansion rate of fly ash decreased by 8.43 % and that of fine blast furnace slag powder decreased by 14.46 %, while the expansion rate of ferronickel slag decreased by 49.40 %. it was confirmed that ferronickel slag can sufficiently be replaced existing supplementary cementitious admixtures such as fly ash and blast furnace slag in terms of suppressing the reactivity of aggregates. However as a result of SEM analysis, ettringites were generated, and additional research about how it affects concrete is needed.

Sustainable controlled low-strength material: Plastic properties and strength optimization

  • Mohd Azrizal, Fauzi;Mohd Fadzil, Arshad;Noorsuhada Md, Nor;Ezliana, Ghazali
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.393-407
    • /
    • 2022
  • Due to the enormous cement content, pozzolanic materials, and the use of different aggregates, sustainable controlled low-strength material (CLSM) has a higher material cost than conventional concrete and sustainable construction issues. However, by selecting appropriate materials and formulations, as well as cement and aggregate content, whitethorn costs can be reduced while having a positive environmental impact. This research explores the desire to optimize plastic properties and 28-day unconfined compressive strength (UCS) of CLSM containing powder content from unprocessed-fly ash (u-FA) and recycled fine aggregate (RFA). The mixtures' input parameters consist of water-to-cementitious material ratio (W/CM), fly ash-to-cementitious materials (FA/CM), and paste volume percentage (PV%), while flowability, bleeding, segregation index, and 28-day UCS were the desired responses. The central composite design (CCD) notion was used to produce twenty CLSM mixes and was experimentally validated using MATLAB by an Artificial Neural Network (ANN). Variance analysis (ANOVA) was used for the determination of statistical models. Results revealed that the plastic properties of CLSM improve with the FA/CM rise when the strength declines for 28 days-with an increase in FA/CM, the diameter of the flowability and bleeding decreased. Meanwhile, the u-FA's rise strengthens the CLSM's segregation resistance and raises its strength over 28 days. Using calcareous powder as a substitute for cement has a detrimental effect on bleeding, and 28-day UCS increases segregation resistance. The response surface method (RSM) can establish high correlations between responses and the constituent materials of sustainable CLSM, and the optimal values of variables can be measured to achieve the desired response properties.

Evaluation of Strength and Fire Resistance Performance of Mortar Mixed with Oyster Shell and Egg Shell (굴 패각과 난각을 혼합한 모르타르의 강도 및 내화성능 평가)

  • Hae-Na Kim;Ui-In Jung;Bong-Joo Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.560-567
    • /
    • 2023
  • This study is part of the research on fire-resistant materials to prepare for changing fire behavior, oyster shell and egg shell, which are natural calcium carbonate materials, were substituted as fine aggregates. The purpose of this study was to evaluate the strength and fire resistance performance according to the substitution rate, and to provide data for use as fire resistance material. Oyster shells and egg shells were substituted with 10~50 % of the fine aggregate, respectively, and tested for strength and Simplified heating according to the KS test method. Although the strength of OS was measured to be higher than that of ES, the backside temperature was also measured to be higher. As a result, it is recommended to use fireproof boards with OS where strength performance is required, such as explosive fires, Where high fire resistance performance is required, such as high-temperature fires over 1000 ℃, fireproof boards with ES can be selected according to the application.

Material Properties of Fast hardening Polymer Mortar by Fine Aggregate Types and Replacement Ratio (잔골재 종류 및 치환율에 의한 속경성 폴리머 모르타르의 재료 특성)

  • Shin, Seung-Bong;Kim, Gyu-Yong;Nam, Jeong-Soo;Shin, Kyoung-Su;Lee, Bo-Kyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.145-151
    • /
    • 2019
  • The Physical performance of use materials was evaluated to improve durability of fast-paced repair mortar used at rapid construction sites. The fastening performance and basic performance were evaluated by substituting ferronickel grinding slag residues, rapid settlement, and EVA-based polymer for mortar. As a result, the compressive strength, flexural strength and adhesion strength were increased due to the use of FS Fine Aggregate and RS Fine Aggregate. The chloride ion promotion test of fast-polymer mortar kept the chloride inhibitory performance from 7 days to 28 days when fNS was used less than 50%. Durability degradation due to the use of FS Fine Aggregate and RS Fine Aggregate has not been found, and it is believed that further consideration of economic and long-term durability will be required for use as alternative Aggregate for construction and civil engineering.

Experimental Study on the Development of EMP Shielded Concrete Using Industrial By-products (산업부산물을 사용한 EMP차폐 콘크리트 개발에 관한 실험적 연구)

  • Min, Tae-Beom;Kim, Hyeong-Cheol;Choi, Hyun-Kuk;Roh, Jeong-Heon;Kim, Kuk-Joo;Park, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.477-484
    • /
    • 2019
  • The purpose of this study is to present basic data for developing concrete with EMP shielding as the structure materials when constructing an EMP shielded building structure. In order to use metal-based recycled aggregates with excellent conductivity and easy procurement for EMP shielding concrete, an evaluation of the stability evaluation and EMP shielding performance was performed. Through the stability evaluation, it was found that the coarse aggregate stability criterion was satisfied, but the oxidized slag did not satisfy the fine aggregate stability criterion, the oxidized slag is not satisfied. In addition, as a result of fresh concrete, the workability is increased and the air volume is decreased. The compressive strength is increased due to the high density and coarse granularity of the recycled aggregates, which increased the cement paste and adhesion, thereby increasing the compressive strength. The results of an EMP shielding test show that aggregates with high shielding performance are electronic arc furnace(EAF) Oxidizing Slag and Cooper Slag. The shielding performance is expected to increase if the average particle size of aggregate is small or uniformly distributed.

Quality Enhancement of Recycled Concrete Aggregates for Backfill Materials by CO2 Carbonation: Development of a 5-kg-scale Prototype Reactor (이산화탄소의 탄산화 반응을 이용한 되메움재용 순환골재의 품질 개량: 5kg급 프로토타입 반응조 개발)

  • Kim, Jinwoo;Jeon, Min-Kyung;Kwon, Tae-Hyuk;Kim, Nam-Ryong
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.1
    • /
    • pp.29-37
    • /
    • 2024
  • In this study, recycled concrete aggregates (RCA) were treated in a 5-kg-scale prototype reactor with carbon dioxide (CO2) to enhance their material quality and geotechnical performance. The aggregate crushing value (ACV) and California bearing ratio (CBR) were measured on untreated RCAs and CO2-treated RCAs. After CO2 treatment, the ACV decreased from 35.6% to 33.2%, and the CBR increased from 97.5% to 102.4%. The CO2 treatment caused a reduction of fine particle generation and an increase in bearing capacity through carbonation. When CO2 treatment was performed with mechanical agitation, which provided additional enhancement in mechanical quality, the ACV was reduced further to 30.3%, and the CBR increased to 137.7%. If upscaled effectively, the proposed CO2 treatment technique would be an effective method to reduce carbon emissions in construction industries.