• 제목/요약/키워드: recycled aggregate powder

검색결과 99건 처리시간 0.021초

폐콘크리트 미분말 대체율 변화와 입도 변화에 따른 경량기포콘크리트의 특성에 관한 실험적 연구 (An Experimental Study on the Properties of Lightweight Foamed Concrete According to the Replacement Ratio and Particle Size of Waste Concrete Powder)

  • 이대근;한상일;박효진;강철;강기웅;김진만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 추계 학술논문 발표대회
    • /
    • pp.121-125
    • /
    • 2009
  • The recycling of waste concrete is increasing for the environment protection and the shortage of aggregate according to the large scale construction project in Korea. The more manufacturing high quality recycled aggregate is produced, the more waste concrete powder generated from the manufacture process of recycled aggregate, and the consideration about the recycling of waste concrete powder is need. Waste concrete powder was used for the partial replacement of silica powder, which is a main raw material for the manufacture of autoclave foamed concrete. According to the results of research, the slurry density, flow, compressive strength mainly depend on the replacement ratio of particle size and waste concrete powder. At the SEM analysis, the more high-waste concrete powder was the less there are generated tobermorite. But we conclude that it is possible to replace WCP as silica source in the manufacture of the lightweight foamed concrete.

  • PDF

Evaluation on the Mechanical Performance of Low-Quality Recycled Aggregate Through Interface Enhancement Between Cement Matrix and Coarse Aggregate by Surface Modification Technology

  • Choi, Heesup;Choi, Hyeonggil;Lim, Myungkwan;Inoue, Masumi;Kitagaki, Ryoma;Noguchi, Takafumi
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권1호
    • /
    • pp.87-97
    • /
    • 2016
  • In this study, a quantitative review was performed on the mechanical performance, permeation resistance of concrete, and durability of surface-modified coarse aggregates (SMCA) produced using low-quality recycled coarse aggregates, the surface of which was modified using a fine inorganic powder. The shear bond strength was first measured experimentally and the interface between the SMCA and the cement matrix was observed with field-emission scanning electron microscopy. The results showed that a reinforcement of the interfacial transition zone (ITZ), a weak part of the concrete, by coating the surface of the original coarse aggregate with surface-modification material, can help suppress the occurrence of microcracks and improve the mechanical performance of the aggregate. Also, the use of low-quality recycled coarse aggregates, the surfaces of which were modified using inorganic materials, resulted in improved strength, permeability, and durability of concrete. These results are thought to be due to the enhanced adhesion between the recycled coarse aggregates and the cement matrix, which resulted from the improved ITZ in the interface between a coarse aggregate and the cement matrix.

폐콘크리트 미분말을 활용한 재생시멘트의 원료조합 (Raw Materials Composition of Recycled Cement from Waste Concrete Powder)

  • 권은희;안재철;박동천;강병희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.61-62
    • /
    • 2012
  • This study is for analyzing possibility of utilizing as cement from waste concrete. The scrapped fine powder which contains a large amount of hydrate of cement can supercede lime stone, and greenhouse gas reductions are expected. However, Fine Aggregate powder efficient separation technology development is essential for that limestone substitution effect and reduce greenhouse gas emissions in order to facilitate through the recycling of the scrapped fine powders.

  • PDF

Estimation of Setting Time of Cement Mortar combined with Recycled Aggregate Powder and Cement Kiln Dust based on Equivalent Age

  • Han, Min-Cheol
    • 한국건축시공학회지
    • /
    • 제12권1호
    • /
    • pp.87-97
    • /
    • 2012
  • This paper presents a method of estimating the setting time of cement mortar incorporating recycled aggregate powder (RP) and cement kiln dust (CKD) at various curing temperatures by applying an equivalent age method. To estimate setting time, the equivalent age using apparent activation energy (Ea) was applied. Increasing RP and CKD leads to a shortened initial and final set. Ea at the initial set and final set obtained by Arrhenius function showed differences in response to mixture type. These were estimated to be from 10~19 KJ/mol in all mixtures, which is smaller than those of conventional mixture ranging from 30~50 KJ/mol. Based on the application of Ea to Freisleben Hansen and Pederson's equivalent age function, equivalent age is nearly constant, regardless of curing temperature and RP contents. This implies that the concept of maturity is applicable in estimating the setting time of concrete containing RP and CKD. A high correlation was observed between estimated setting time and measured setting time. A multiregression model was provided to determine setting time reflecting RP and CKD. Thus, the setting time estimation method studied herein can be applicable to concrete incorporating RP and CKD in the construction field.

폐콘크리트 미분말을 이용한 재생시멘트 모르터의 중성화 특성 (Carbonation Properties of Recycled Cement Mortar made of Cementitious Powder from Concrete Waste)

  • 김진양;박차원;안재철;강병희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 춘계 학술기술논문발표대회 논문집
    • /
    • pp.61-64
    • /
    • 2005
  • Recently, there have been many studies about recycling cementitious powder from concrete waste(hereinafter referred to as waste powder), generated after recycle aggregate production. Previous studies showed that when the heating process of waste powder at $700^{\circ}C,\;Ca(OH)_2$ in paste is dehydrated making possible the restoration of hydraulic properties. Recycled cement with hydraulic properties restored is thought to be re-hydrated through the mechanism of hydration, which is almost similar in Portland cement. This clearly suggests that the hydrate of recycled cement is alkali in type. Like in general concrete, if recycled cement is used as a structural material, resistance performance against carbonation or neutralization by $CaCO_3$ in air probably would be most influential to the life of steel-reinforced concrete structure. Thus the purpose of this study is to make an experimental review on chemical properties of recycled cement, manufactured with concrete waste as base material, and investigate the durability of concrete using recycled cement through evaluating the cement s performance of resistance to carbonation in accordance with its accelerating age. Based on its results, further, the study seeks to provide basic information about ways of utilizing recycled cement.

  • PDF

폐콘크리트 미분말을 이용한 재생시멘트 모르터의 중성화 특성 (Carbonation Properties of Recycled Cement Mortar made of Cementitious Powder from Concrete Waste)

  • 박차원;안재철;강병희
    • 한국건축시공학회지
    • /
    • 제6권4호
    • /
    • pp.61-68
    • /
    • 2006
  • Recently, there have been many studies about recycling cementitious powder from concrete waste(hereinafter referred to as waste powder), generated after recycle aggregate production. Previous studies showed that when the heating process of waste powder at $700^{\circ}C,\;Ca(OH)_2$ in paste is dehydrated making possible the restoration of hydraulic properties. Recycled cement with hydraulic properties restored is thought to be re-hydrated through the mechanism of hydration, which is almost similar in Portland cement. This clearly suggests that the hydrate of recycled cement is alkali in type. Like in general concrete, if recycled cement is used as a structural material, resistance performance against carbonation or neutralization by $CaCO_3$ in air probably would be most influential to the life of steel-reinforced concrete structure. Thus the purpose of this study is to make an experimental review on chemical properties of recycled cement, manufactured with concrete waste as base material, and investigate the durability of concrete using recycled cement through evaluating the cement's performance of resistance to carbonation in accordance with its accelerating age. Based on its results, further, the study seeks to provide basic information about ways of utilizing recycled cement.

예비가열법에 의한 폐콘크리트 재생골재의 물성개선 (The Improvement of Properties of Recycled aggregates using Concrete Waste by Pre-heating Method.)

  • 최현수;김효열;최봉철;강병희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.73.2-79
    • /
    • 2003
  • The purpose of this study is to provide the basic data on the optimum method for interfacial separation for an effective recycle of concrete waste by using the thermal properties of concrete. Therefore, this study is proceeded by dividing the interface of concrete into cement paste and fine aggregates or mortar and coarse aggregate, considering the aspect of recycled cement and aggregate as the recycling use of concrete waste. As results of the experiment, in case of recycle cement, the interfacial separation is easily appeared, but it is shown that the mixed amount of powder included in fine aggregate doesn't greatly decrease. But, in case of recycle coarse aggregate, the effect of interfacial separation by preliminary heating is predominant. Especially, the bonding rate of mortar is the lowest when it is heated 5 times for 120 minutes at $300^{\circ}C$. Hence, it is considered that it will be an excellent effect of quality control when the results of this study is applied to a manufacturing system of recycle coarse aggregate which is about to put into practical use.

  • PDF

탈황석고의 가공법 및 잔골재종류 변화에 따른 고로슬래그 미분말 다량 치환 모르타르의 품질 특성 (Quality of High Volume Blast Furnace Slag Mortar Depending on Desulfurization Gypsum Treating Methods and Fine Aggregate Type)

  • 한천구;이동윤
    • 한국건설순환자원학회논문집
    • /
    • 제4권2호
    • /
    • pp.157-164
    • /
    • 2016
  • 본 연구에서는 고로슬래그 미분말 다량 치환한 시멘트 모르타르의 자극재로 탈황석고(FGD)를 사용한 경우, FGD에 포함되어 있는 활성탄의 제거로 체가름방법과 고온가열 조건을 원분과 비교하고, 또한 골재로서 순환골재(RFA)와 천연골재(NFA)를 사용하는 골재종류 변화 조건에서 각종 품질특성을 검토하였다. 실험결과 FGD의 활성탄 제거방법은 $500^{\circ}C$ 고온가열보다 0.3mm 체가름법이 우수하였고, FGD 치환율은 5~10%일 때, 잔골재는 NFA보다 RFA에서 비교적 양호한 결과를 얻을 수 있었다. 그러나 RFA를 이용한 모르타르의 경우는 실무 활용시 건조수축 길이변화율 및 흡수율 측면에서는 용도제한 및 별도의 품질향상 대책이 요구되었다.

순환잔골재를 혼입한 자기충전 콘크리트의 현장적용을 위한 실험적 연구 (An Experimental Study on Field Application of Self-Compacting Concrete Using Recycled Fine Aggregate)

  • 류재석;송일현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권4호
    • /
    • pp.193-203
    • /
    • 2011
  • 본 연구에서는 폐콘크리트에서 발생하는 순환잔골재가 구조용 재료로서 많은 문제점이 있음을 인지하고 순환잔골재가 포함하고 있는 미분말이 강도증진 효과와 유동성을 증가 시킬 수 있다는 특성을 이용하여 자기충전 콘크리트(Self-Compacting Concrete, 이하 SCC로 표기)에 활용하게 되었다. 즉 순환잔골재가 갖는 미분말이 자기충전 콘크리트 특성인 고강도(40 MPa 이상)와 높은 유동성(JSCE 2등급)을 발현하기에 적당하여 폐콘크리트에서 발생하는 순환잔골재를 일반잔골재 대비 순환잔골재의 혼입률을 25%씩 증가시켜, 총 5수준으로 달리하여 자기충전 콘크리트에 적용하였으며, 이에 따라 굳지 않은 콘크리트의 물리적 특성, 경화한 콘크리트의 역학적 및 내구 특성을 검토하여 순환잔골재를 자기충전 콘크리트 재료로서 활용 가능성을 검토하고자 한다. 그 결과 물리적, 역학적 및 내구특성의 5수준 배합비율 중 일반잔골재 대비 순환잔골재는 50% 혼입률까지 적용가능하다는 결론을 얻었으며, 그 이상의 혼입률에서는 오히려 성능저하가 발생한다는 것을 알 수 있었다. 또한 실생활에서의 적용 가능성을 알아보기 위한 실구조물의 적용성이 차후 검토 되어야 할 것으로 판단된다.

분쇄 효율에 따른 순환골재 분말 혼입 모르타르의 특성 (Characteristics of Recycled Aggregate Powder Containing Mortar Depending on Grinding Efficiency)

  • 방진욱;장영일;이종원;문석호;추현승
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권2호
    • /
    • pp.116-121
    • /
    • 2019
  • 본 연구에서는 분쇄한 순환골재 분말(RAP)을 건설소재로 활용하기 위하여 순환골재 및 RAP의 재료적 특성을 파악하고, 시멘트 대체재로 RAP를 적용한 모르타르의 물리 역학적 특성을 분석하였다. RAP 입도분석결과, 볼밀 시간이 증가함에 따라 0.6mm 입도의 분포량이 증가하고, 조립률은 감소하는 것으로 나타났다. RAP를 치환한 모르타르의 유동성은 Plain 보다 향상되었으며, 이는 RAP를 결합재 대체재로 적용함으로서 잉여수의 증가하고 이로 인해 유동성이 증가된 것으로 판단된다. RAP를 적용한 모르타르의 압축강도 평가 결과, 치환율이 증가함에 따라 압축강도가 낮아지는 경향을 나타내었지만, 약 10%까지는 치환하여 사용가능한 것으로 판단된다. 이상의 연구로부터 분말화한 순환골재는 잔골재 대체재로서도 품질특성을 만족할 수 있는 것으로 나타났으며, 본 연구 범위에서는 결합재 대체재로 약 10% 적용시 유동성 개선 및 강도 확보가 가능할 것으로 판단된다.