• Title/Summary/Keyword: recycled

Search Result 3,419, Processing Time 0.025 seconds

Characterization of Compressive Strength and Elastic Modulus of Recycled Aggregate Concrete with Respect to Replacement Ratios (순환골재 치환율에 따른 순환골재콘크리트의 압축강도 및 탄성계수 특성)

  • Sim, Jongsung;Park, Cheolwoo;Park, Sung Jae;Kim, Yong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.213-218
    • /
    • 2006
  • As a manufacturing process of recycled aggregate improves the quality of recycled aggregate shall be sufficient enough to be used for structural concrete. This study characterized compressive strength and elastic modulus of concrete that used recycled coarse and fine aggregate. Before the strength tests, the fundamental characteristics of recycled aggregate were preliminarily analyzed and the recycled aggregate satisfied the class 1 requirements in KS F 2573. As the replacement ratio increased, the compressive strength and elastic modulus of recycled aggregate concrete decreased. When the coarse and fine aggregates were completely replaced with the recycled, the compressive strength and elastic modulus were decreased by 13% and 31%, respectively. Based on the test results, this study suggests equations for predicting the compressive strength and elastic modulus of the recycled aggregate concrete with respect to the replacement ratio. The values from the equations were in good agreement with the test data from this study and others.

An Evaluation of the Compressive Strength of Recycled Aggregate Concrete by the Non-Destructive Testing (비파괴 시험에 의한 재생골재 콘크리트의 압축강도 평가)

  • Chung, Heon-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.63-70
    • /
    • 2004
  • The objective of this study is to evaluate the compressive strength of recycled aggregate concrete by the non-destructive testing. Main experimental variables were the replacement level of recycled aggregate and blast-furnace slag, which were divided into two series according to recycled aggregate maximum size. Test results showed that a recycled aggregate had a significant influence on the non-destructive testing results, such as rebound number, Ultrasonic pulse velocity, and frequency. A prediction model of compressive strength considering the replacement level of recycled aggregate was suggested by multi-regression analysis and was compared with test results.

Stress-strain relationship for recycled aggregate concrete after exposure to elevated temperatures

  • Liang, Jiong-Feng;Yang, Ze-Ping;Yi, Ping-Hua;Wang, Jian-Bao
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.609-615
    • /
    • 2017
  • In this paper, the effects of elevated temperatures on the strength and compressive stress-strain curve (SSC) of recycled coarse aggregate concrete with different replacement percentages are presented. 90 recycled coarse aggregate concrete prisms are heated up to 20, 200, 400, 600, $800^{\circ}C$. The results show that the compressive strength, split tensile strength, elastic modulus of recycled aggregate concrete specimens decline significantly as the temperature rise. While the peak strain increase of recycled aggregate concrete specimens as the temperature rise. Compared to the experimental curves, the proposed stress-strain relations for recycled aggregate concrete after exposure elevated temperatures can be used in practical engineering applications.

An Experimental Study on the Replacement Proportion of Recycled Aggregate Effecting on the Engineering Properties of Recycled Concrete (재생골재콘크리트의 공학적 특성에 미치는 재생골재 혼합조건의 영향에 관한 실험적 연구(제2보 경화콘크리트의 성상 및 비파괴 시험 적용성에 관하여))

  • 남상일;이상수;류광일;박정일;김진만;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.22-25
    • /
    • 1993
  • The study of recycled aggregate concrete in which demolition waste is utilized to produce aggregate for new concrete, can contribute to the solution of two problems, The first is the shortage of aggregate from river, and the second is the waste disposal problem. In comparison with natural aggregate concrete, recycled aggregate concrete shows reductions in compressive strength , tensile strength, vending strength , shear strength and increases in drying shrinkage and creep. Recycled aggregate concrete may also be less durable due to increase in porosity and permeability. The purpose of this study is to investigate and analyze the variation of engineering properties according to replacement proportion of recycled aggregates and applicability of non-destructive test in the gardened recycled concrete.

  • PDF

An Experimental Study on the Replacement Proportion of Recycled Aggregate Effecting in the Engineering Properties of Recycled Concrete (Part 1, Experimental Program and Fluidity Performance of Fresh Concrete (재생골재콘크리트의 공학적 특성에 미치는 재생골재 혼합조건의 영향에 관한 실험적 연구 (제 1보, 실험계획 및 아직 굳지 않은 유동화 특성을 중심으로 ))

  • 최진성;윤병수;임정수;심진만;남상일;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.16-21
    • /
    • 1993
  • The study of recycled aggregate concrete in which demolition waste is utilized to produce aggregate for new concrete, can contribute to the solution of two problems. The first is the shortage of aggregate from river, and the second is the waste disposal problem. In comparison with natural aggregate concrete, recycled aggregate concrete shows reductions in compressive strength, tensile strength , vending strength, shear strength and increases in drying shrinkage and creep. Recycled aggregate concrete may also be less durable due to increase in porosity and permeability. Therefore, the purpose of this study is to analyze the applicability of recycled concrete in the influence of a substitute ratio of recycled sand gravel.

  • PDF

A Basic Study for evaluation on the Elastic Modulus of Recycled Aggregate Concrete by using Composite Model (복합이론에 의한 순환골재 콘크리트의 탄성계수 평가에 관한 기초적 연구)

  • Kim, Hyun-Wook;Kim, Ji-Yoon;Kim, Wan-ki;Park, Won-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.73-74
    • /
    • 2012
  • The elastic modulus of recycled aggregate concrete (RAC) can be evaluated by using composite models with experiment. In this study, Hashin's composite model was adapted to evaluate elastic modulus considering physical properties of recycled coarse aggregate (RCA) that mortar is attached. Elastic modulus testes for cement paste, mortar and recycled coarse aggregate concrete were carried out considering W/C and recycled coarse aggregate content rate. As a result, the elastic modulus of RAC was evaluated comparing with both experiment results and the existing estimation formula. Those can be used for further studies as a preliminary data.

  • PDF

The Preparation of CarboxymethylCellulose from Recycled Fiber(I) -The Reactivity in Carboxymethylation of Recycled Fiber- (재생(再生)펄프를 이용(利用)한 카르복시메틸세룰로오스의 제조(製造)(I) -재생(再生)펄프의 Carboxymethylation반응성(反應性)을 중심(中心)으로-)

  • Choi, Jeong-Heon;Jo, Byoung-Muk;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.59-64
    • /
    • 1993
  • The purpose of this study is to investigate the preparation of the carboxymethylcellulose from recycled fiber, especially on the reactivity of carboxymethylation. Using a deinked pulp and a dissolving pulp. Green's method is adapted to the carboxymethylation. We conformed that the carboxymethyl group is led for recycled fiber by FT-IR analysis. The recycled fiber is more reactive than the dissolving pulp because the recycled fiber had been defiberated and pretreated with alkali. It suggests that deinking process is in accordance with pretreatment of CMC process. Therefore, it may be possible to prepare CMC from the recylced fiber economically.

  • PDF

Mechanical Characteristics of Polymer Concrete made with Recycled Plastic and Concrete Aggregates (폐플라스틱과 재생골재를 이용한 폴리머콘크리트의 역학적 특성)

  • Jo Byung-Wan;Park Seung-Kook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.324-327
    • /
    • 2004
  • In this paper, fundamental properties of Polymer Concrete made from unsaturated polyester resin based on recycled PET and recycled aggregate(RPC) were investigated. Resins based on recycled PET and recycled aggregate offer the possibility of low source cost for forming useful products, and would also help alleviate an environmental problem and save energy. The results of test for resin contents and recycled aggregate ratio are showed that the strength of RPC increases with resin contents relatively, however beyond a certain resin content the strength does not change appreciably, and the relationship between the compressive strength and aggregate contents at resin $9\%$ has a close correlation linearly whereas there is no correlation between the compressive strength and the flexural strength of RPC with recycled concrete aggregate.

  • PDF

Characteristic of Resilient Modulus and Unconfined Compressive Strength for Recycled Materials blend with Cement Kiln Dust (CKD 혼합에 따른 Recycled Material의 회복탄성계수와 일축압축강도 특성)

  • Son, Young-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.2
    • /
    • pp.19-25
    • /
    • 2010
  • This study was conducted to determine the resilient modulus (Mr) and the unconfined compressive strength (UCS) of two recycled roadway materials such as recycled pavement material (RPM) and road surface gravel (RSG) with or without cement kiln dust (CKD). The recycled materials were blended with two CKD contents (5, 10 %) and 28 day curing time. Mr and UCS tests were also conducted after 10cycles of freezing and thawing to asses the impact of freeze-thaw cycling. Mr was determined conducting by the laboratory test method described by NCHRP 1-28A. Stabilized RPM and RSG had a modulus and a strength higher than unstabilized RPM and RSG. Mr and UCS of RPM and RSG mixed with CKD increased with increasing CKD content. The results indicated that the addition of CKD could be improved the strength and the stiffness of RPM and RSG. Therefore, RPM, RSG and CKD could be used as an effective materials in the reconstruction of roads.

A SCANNING ELECTRON MICROSCOPIC STUDY ON THE CORROSION RESIST ANCE OF CHEMICALLY AND THERMALLY RECYCLED METAL BRACKETS (화학처리(化學處理) 및 열처리(熱處理)한 재생금속(再生金屬) Bracket의 내식성(耐蝕性)에 관(關)한 주사전자현미경적(走査電子顯微鏡的) 연구(硏究))

  • Yoon, Young Joo;Lee, Dong-Joo
    • The korean journal of orthodontics
    • /
    • v.19 no.2
    • /
    • pp.85-93
    • /
    • 1989
  • The purpose of this study was to evalute the corrosion resistance of chemically and thermally recycled metal brackets. In vivo, two types of recycled metal brackets and new brackets were directly bonded for 1 year, and then the microstructure of bracket surface was examined by S.E.M. (J.S.M.-840 Scanning Electron Microscope, Japan). The following results were obtained. 1) The microstructure of new and chemically recycled metal bracket surfaces showed regular structure without island formation and recrystallization; and after 1 year, the same appearance except some scratches. 2) The microstructure of thermally recycled metal bracket surfaces showed a beginning of island formation and recrystallization by annealing, and after 1 year, a typical corrosive appearance, completely island formation with some metal grains by recrystallization. 3) Chemically recycled metal brackets showed better corrosion resistance than thermally recycled metal brackets.

  • PDF