• 제목/요약/키워드: rectangular liquid-storage structure

검색결과 24건 처리시간 0.029초

직사각형 단면을 갖는 유체 저장 구조물의 거동에 관한 연구 (A Study on Behavior of Rectangular Liquid Storage Structures)

  • 박장호
    • 한국안전학회지
    • /
    • 제18권1호
    • /
    • pp.101-107
    • /
    • 2003
  • Dynamic behavior of flexible rectangular liquid storage structures is analysed by the developed method. The rectangular liquid storage structures are assumed to be fixed to the ground and a moving coordinate system is used. The irrotational motion of invicid and incompressible ideal fluid is represented by two analytic solutions. One is the solution of the fluid motion in the rigid rectangular liquid storage structure due to ground motions and the other is the solution of the fluid motion by the motion of the wall in the flexible rectangular liquid storage structure. The motion of structure is modeled by finite elements. The fluid-structure interaction effect is reflected into the coupled equation of motion as added fluid mass matrix. The free surface sloshing motion and hydrodynamic pressure acting on the wall in the flexible rectangular liquid storage structure due to the horizontal ground motion are obtained by the developed method and verified.

유체-구조물 상호작용을 고려한 직사각형 액체저장탱크의 단순해석법 (Simplified Analysis of Rectangular Liquid Storage Tanks Considering Fluid-Structure Interaction)

  • 이진호;조정래
    • 한국지진공학회논문집
    • /
    • 제26권5호
    • /
    • pp.203-209
    • /
    • 2022
  • A simplified method for earthquake response analysis of a rectangular liquid storage tank is proposed with fluid-structure interaction considered. In order to simplify the complex three-dimensional structural behavior of a rectangular liquid storage tank, it is assumed that structural deformation does not occur in the plane parallel to the direction in which the earthquake ground motion is applied but in the plane perpendicular to the direction. The structural deformation is approximated by combining the natural modes of the simple beam and the cantilever beam. The hydrodynamic pressure, the structure's mass and stiffness, and the hydrodynamic pressure's added mass are derived by applying the Rayleigh-Ritz method. The natural frequency, structural deformation, pressure, effective mode mass, and effective mode height of the rectangular liquid storage tank are obtained. The structural displacement, hydrodynamic pressure, base shear, and overturning moment are calculated. The seismic response analysis of an example rectangular liquid storage tank is performed using the proposed simplified approach, and its accuracy is verified by comparing the results with the reference solution by the finite element method. Existing seismic design codes based on the hydrodynamic pressure in rigid liquid storage tanks are observed to produce results with significant errors that cannot be ignored.

기초격리된 직사각형 유체 저장 구조물의 동적 해석 (Dynamic Analysis of Base-Isolated Rectangular Liquid Storage Structures)

  • 박장호
    • 한국안전학회지
    • /
    • 제19권4호
    • /
    • pp.109-116
    • /
    • 2004
  • The dynamic behavior of the rectangular liquid storage structure is known to be greatly influenced by fluid-structure interaction. By mounting the liquid storage structure on the properly designed base isolators, dynamic response of the superstructure can be reduced. However, base isolators inevitably incur large displacement of the structure to the ground ·ind may give adverse effects on the sloshing height. This paper presents the analysis method for fluid-structure-isolator interaction in base-isolated rectangular liquid storage structures. In the method, the irrotational motion of invicid and incompressible ideal fluid is expressed by analytic solutions and the superstructure and isolators are properly modeled by finite element and bilinear model. Free surface sloshing motion, hydrodynamic pressure acting on the wall and structural response are obtained by the presented method.

유체-구조물 상호작용 효과를 고려한 직사각형 단면의 수조구조물의 동적 해석 (Dynamic Analysis of Rectangular Liquid Storage Containers Considering Fluid-Structure Interaction effects)

  • 박장호;권기준
    • 한국안전학회지
    • /
    • 제15권3호
    • /
    • pp.96-101
    • /
    • 2000
  • The effects of internal fluid motion have to be considered in the analysis of liquid storage containers. Therefore this thesis developed a three-dimensional boundary element-finite element method for the analysis of rectangular liquid storage containers. The irrotational motion of inviscid and incompressible ideal fluid is modeled by using boundary elements and the motion of structure by finite elements. Coupling is performed by using compatibility and equilibrium conditions along the interface. Dynamic response characteristics of rectangular liquid storage containers such as sloshing motion, hydrodynamic pressure, displacement by fluid-structure interaction are investigated.

  • PDF

Seismic vulnerability of sliding isolation concrete rectangular liquid storage tanks

  • Cheng, Xuansheng;Yin, Siyuan;Chen, Wenjun;Jing, Wei
    • Structural Engineering and Mechanics
    • /
    • 제84권4호
    • /
    • pp.503-515
    • /
    • 2022
  • Based on the sliding isolation concrete LSS (liquid-storage structure), the specific seismic vulnerability is analyzed according to the general failure mode. In this study, 12 seismic inputs with different characteristics are used, and their acceleration peak values are modulated. By inputting these waves to the sliding isolation concrete storage structure, the finite-element models of different concrete rectangular LSSs are obtained and analyzed, and the failure probabilities are obtained according to the IDA (incremental dynamic analysis) curves of the structure. The results show that when the seismic acceleration peak value gradually increases from 0.1 g to 1.0 g, the failure probability of LSS gradually increases with the increase in friction coefficient. However, the failure probability of a sliding isolation LSS is less than 100% and far less than the failure probability of a non-isolated rectangular LSS, which shows that an isolated liquid storage structure continues working under a big earthquake. Thus, the sliding isolation for the concrete LSS has a significant damping effect.

수평 및 수직 지반운동을 받는 직사각형 유체 저장 구조물의 동적 해석 (Dynamic Analysis of Rectangular Liquid Storage Structures Excited by Horizontal and Vertical Ground Motions)

  • 박장호
    • 한국안전학회지
    • /
    • 제19권3호
    • /
    • pp.108-117
    • /
    • 2004
  • Dynamic analysis method is Presented for analyzing rectangular liquid storage structures excited by horizontal and vertical ground motions. The irrotational motion of invicid and incompressible ideal fluid in rigid rectangular liquid storage structures subjected to horizontal and vertical ground motions and the motion of fluid induced by structural deformation are expressed by analytic solutions. Analysis methods are obtained by applying analytic solutions of the fluid motion to finite element equation of the structural motion. The fluid-structure interaction effect is reflected into the coupled equation as added fluid mass matrix. The free surface sloshing motion, hydrodynamic pressure acting on the wall and structural behavior due to horizontal and vertical ground motions are obtained by the presented method.

Shock absorption of concrete liquid storage tank with different kinds of isolation measures

  • Jing, Wei;Chen, Peng;Song, Yu
    • Earthquakes and Structures
    • /
    • 제18권4호
    • /
    • pp.467-480
    • /
    • 2020
  • Concrete rectangular liquid storage tanks are widely used, but there are many cases of damage in previous earthquakes. Nonlinear fluid-structure interaction (FSI) is considered, Mooney-Rivlin material is used for rubber bearing, nonlinear contact is used for sliding bearing, numerical calculation models of no-isolation, rubber isolation, sliding isolation and hybrid isolation concrete rectangular liquid storage tanks are established; dynamic responses of different structures are compared to verify the effectiveness of isolation methods; and influences of earthquake amplitude, bidirectional earthquake and far-field long-period earthquake on dynamic responses are investigated. Results show that for liquid sloshing wave height, rubber isolation cause amplification effect, while sliding isolation and hybrid isolation have reduction effect; displacement of rubber isolation structure is much larger than that of sliding isolation with limiting-devices and hybrid isolation structure; when PGA is larger, wall cracking probability of no-isolation structure becomes larger, and probability of liquid sloshing wave height and structure displacement of rubber isolation structure exceeds the limit is also larger; under bidirectional earthquake, occurrence probabilities that liquid sloshing wave height and structure displacement of rubber isolation structure exceed the limit will be increased; besides, far-field long-period earthquake mainly influences structure displacement and liquid sloshing wave height. On the whole, control effect of sliding isolation is the best, followed by hybrid isolation, and rubber isolation is the worst.

Seismic reliability of concrete rectangular liquid-storage structures

  • Cheng, Xuansheng;He, Peicun;Yu, Dongjiang
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.563-570
    • /
    • 2019
  • To analyze the seismic reliability of concrete rectangular liquid storage structures (CRLSSs), assuming that the wall thickness and internal liquid depth of CRLSSs are random variables, calculation models of CRLSSs are established by using the Monte Carlo finite element method (FEM). The principal stresses of the over-ground and buried CRLSSs are calculated under three rare fortification intensities, and the failure probabilities of CRLSSs are obtained. The results show that the seismic reliability increases with the increase of wall thickness, whereas it decreases with the increase of liquid depth. Between the two random factors, the seismic reliability of CRLSSs is more sensitive to the change in wall thickness. Compared with the over-ground CRLSS, the buried CRLSS has better reliability.

수평 양방향 지반운동이 작용하는 직사각형 액체저장탱크의 지진응답 특성 (Characteristics of Earthquake Responses of a Rectangular Liquid Storage Tanks Subjected to Bi-directional Horizontal Ground Motions)

  • 이진호;이세혁
    • 한국전산구조공학회논문집
    • /
    • 제33권1호
    • /
    • pp.45-53
    • /
    • 2020
  • 액체저장탱크의 지진 거동은 유체-구조물 상호작용에 의해 복잡하게 나타나므로, 이 시스템의 지진응답과 피해를 정확하게 예측하기 위해서는 이를 엄밀히 고려하여야 한다. 이 연구에서는 유체-구조물 상호작용을 엄밀히 고려하여 양방향 수평 지반운동이 작용하는 직사각형 액체저장탱크의 지진응답 해석을 수행하고 그 응답 특성을 분석하고자 한다. 이를 위해 지진하중 작용 시 발생하는 유체 동수압을 유한요소 기법을 사용하여 산정하고, 이 동수압을 구조물의 유한 요소에 작용하여 전체 시스템의 동적 거동을 모사한다. 예제 직사각형 액체저장탱크의 지진응답 해석을 통하여 대상 시스템의 동적 거동은 양방향 수평 지반운동이 작용하는 방위각에 의해 유의미한 영향을 받음을 확인할 수 있다. 그러므로 직사각형 액체저장탱크의 내진설계를 수행하거나 내진성능을 검토할 때는 이러한 특성을 고려하여야 할 것이다.

유체요소를 이용한 직사각형 유체 저장구조물의 지진해석 (Seismic Analysis of Rectangular Liquid Storage Structures Ssing Fluid Elements)

  • 김영석;김제민;윤정방
    • 한국해양공학회지
    • /
    • 제6권2호
    • /
    • pp.46-54
    • /
    • 1992
  • In this paper, behavior of rectangular storage structures under earthquake loadings are investigated. Linear sloshing is assumed in this study. The effect of the wall flexibility is considered. Eulerian and lagrangian approaches are presented. The Eulerian approach is carried out by solving the boundary value problem for the fluid motion. In the lagrangian approach, the fluid as well as the storage structure is modelled by the finite element method. The fluid region is discretized by using fluid elements. The (1 $\times$ 1)-reduced integration is carried out for constructing the stiffness matrices of the fluid elements. Seismic analysis of the coupled system is carried out by the response spectra method. The numerical results show that the fluid forces on the wall obtained by two approaches are in good agreements. By including the effect of the wall flexibility, the forces due to fluid motion can be increased very significantly.

  • PDF